145 research outputs found

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    Lower Bounds in the Preprocessing and Query Phases of Routing Algorithms

    Full text link
    In the last decade, there has been a substantial amount of research in finding routing algorithms designed specifically to run on real-world graphs. In 2010, Abraham et al. showed upper bounds on the query time in terms of a graph's highway dimension and diameter for the current fastest routing algorithms, including contraction hierarchies, transit node routing, and hub labeling. In this paper, we show corresponding lower bounds for the same three algorithms. We also show how to improve a result by Milosavljevic which lower bounds the number of shortcuts added in the preprocessing stage for contraction hierarchies. We relax the assumption of an optimal contraction order (which is NP-hard to compute), allowing the result to be applicable to real-world instances. Finally, we give a proof that optimal preprocessing for hub labeling is NP-hard. Hardness of optimal preprocessing is known for most routing algorithms, and was suspected to be true for hub labeling

    Centrality scaling in large networks

    Full text link
    Betweenness centrality lies at the core of both transport and structural vulnerability properties of complex networks, however, it is computationally costly, and its measurement for networks with millions of nodes is near impossible. By introducing a multiscale decomposition of shortest paths, we show that the contributions to betweenness coming from geodesics not longer than L obey a characteristic scaling vs L, which can be used to predict the distribution of the full centralities. The method is also illustrated on a real-world social network of 5.5*10^6 nodes and 2.7*10^7 links

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Geospatial partitioning of open transit data

    Get PDF

    Tractable Pathfinding for the Stochastic On-Time Arrival Problem

    Full text link
    We present a new and more efficient technique for computing the route that maximizes the probability of on-time arrival in stochastic networks, also known as the path-based stochastic on-time arrival (SOTA) problem. Our primary contribution is a pathfinding algorithm that uses the solution to the policy-based SOTA problem---which is of pseudo-polynomial-time complexity in the time budget of the journey---as a search heuristic for the optimal path. In particular, we show that this heuristic can be exceptionally efficient in practice, effectively making it possible to solve the path-based SOTA problem as quickly as the policy-based SOTA problem. Our secondary contribution is the extension of policy-based preprocessing to path-based preprocessing for the SOTA problem. In the process, we also introduce Arc-Potentials, a more efficient generalization of Stochastic Arc-Flags that can be used for both policy- and path-based SOTA. After developing the pathfinding and preprocessing algorithms, we evaluate their performance on two different real-world networks. To the best of our knowledge, these techniques provide the most efficient computation strategy for the path-based SOTA problem for general probability distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental Algorithms 2016 and published by Springer in the Lecture Notes in Computer Science series on June 1, 2016. Includes typographical corrections and modifications to pre-processing made after the initial submission to SODA'15 (July 7, 2014

    Efficient Routing in Road Networks with Turn Costs

    Full text link

    TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia

    Get PDF
    While research on T cell exhaustion in context of cancer particularly focuses on CD8C cytotoxic T cells, the role of inhibitory receptors on CD4C T-helper cells have remained largely unexplored. TIGIT is a recently identified inhibitory receptor on T cells and natural killer (NK) cells. In this study, we examined TIGIT expression on T cell subsets from CLL patients. While we did not observe any differences in TIGIT expression in CD8C T cells of healthy controls and CLL cells, we found an enrichment of TIGITC T cells in the CD4C T cell compartment in CLL. Intriguingly, CLL patients with an advanced disease stage displayed elevated numbers of CD4C TIGITC T cells compared to low risk patients. Autologous CLL-T cell co-culture assays revealed that depleting CD4C TIGITC expressing T cells from co-cultures significantly decreased CLL viability. Accordingly, a supportive effect of TIGITCCD4C T cells on CLL cells in vitro could be recapitulated by blocking the interaction of TIGIT with its ligands using TIGIT-Fc molecules, which also impeded the T cell specific production of CLL-prosurvival cytokines. Our data reveal that TIGITCCD4CT cells provide a supportive microenvironment for CLL cells, representing a potential therapeutic target for CLL treatment

    Separating Hierarchical and General Hub Labelings

    Full text link
    In the context of distance oracles, a labeling algorithm computes vertex labels during preprocessing. An s,ts,t query computes the corresponding distance from the labels of ss and tt only, without looking at the input graph. Hub labels is a class of labels that has been extensively studied. Performance of the hub label query depends on the label size. Hierarchical labels are a natural special kind of hub labels. These labels are related to other problems and can be computed more efficiently. This brings up a natural question of the quality of hierarchical labels. We show that there is a gap: optimal hierarchical labels can be polynomially bigger than the general hub labels. To prove this result, we give tight upper and lower bounds on the size of hierarchical and general labels for hypercubes.Comment: 11 pages, minor corrections, MFCS 201
    • ÔÇŽ
    corecore