302 research outputs found

    Gamma Ray Bursts and their links with Supernovae and Cosmology

    Get PDF
    Gamma-ray bursts are the most luminous explosions in the Universe, whose origin and mechanism is the focus of intense interest. They appear connected to supernova remnants from massive stars or the merger of their remnants, and their brightness makes them temporarily detectable out to the larges distances yet explored in the Universe. After pioneering breakthroughs from space and ground experiments, their study is entering a new phase with observations from the recently launched \fermi satellite, as well as the prospect of detections or limits from large neutrino and gravitational wave detectors. The interplay between such observations and theoretical models of gamma-ray bursts is reviewed, as well as their connections to supernovae and cosmology.Comment: 36 pages, 7 figures; prepared for the XXVIIIth General Assembly Int. Ast. Union, Beijing, Aug. 201

    Gamma Ray Bursts in the Swift-Fermi Era

    Get PDF
    Gamma-ray bursts (GRBs) are among the most violent occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole birth. They are highly luminous events and provide excellent probes of the distant universe. GRB research has greatly advanced over the past 10 years with the results from Swift, Fermi and an active follow-up community. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.Comment: 16 pages and 15 figures. Invited review article to appear in the special issue of Frontiers of Physics on High Energy Astrophysics, eds. B. Zhang and P. Meszaro

    The gamma ray continuum spectrum from the galactic center disk and point sources

    Get PDF
    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state

    Recent Progress on GRBs with Swift

    Get PDF
    Gamma-ray bursts (GRBs) are powerful explosions, visible to high red shift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from ~ 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type. II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>S and one at z=9.4 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy

    Technology Needs for Gamma Ray Astronomy

    Get PDF
    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background

    Formation flying for a Fresnel lens observatory mission

    Full text link
    The employment of a large area Phase Fresnel Lens (PFL) in a gamma-ray telescope offers the potential to image astrophysical phenomena with micro-arcsecond angular resolution. In order to assess the feasibility of this concept, two detailed studies have been conducted of formation flying missions in which a Fresnel lens capable of focussing gamma-rays and the associated detector are carried on two spacecraft separated by up to 106^6 km. These studies were performed at the NASA Goddard Space Flight Center Integrated Mission Design Center (IMDC) which developed spacecraft, orbital dynamics, and mission profiles. The results of the studies indicated that the missions are challenging but could be accomplished with technologies available currently or in the near term. The findings of the original studies have been updated taking account of recent advances in ion thruster propulsion technology.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 7 page

    Short GRB Prompt and Afterglow Correlations

    Get PDF
    The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio
    • ‚Ķ