302 research outputs found
A MACROSCOPIC MODEL OF THE THERMO-CHEMO-MECHANICAL BEHAVIOUR OF MIXED IONIC AND ELECTRONIC CONDUCTORS
International audienceThis paper suggests a macroscopic model describing the thermo-chemo-mechanical behaviour of ceramic dense membrane for oxygen separation application. This work takes in account to oxygen permeation and strain induced by stoichiometry variation with working conditions. This model, developed within the traditional framework of phenomenological approach, is based on the assumption of strain partitions and requires only three state variables: oxygen activity, temperature and total strain. Oxygen bulk diffusion and surface exchanges are described thanks to the thermodynamic approach developed by Onsager. While many works focused on semi-permeation induced strain, the proposed model also includes the temperature effect on chemical expansion. Strains predicted by the proposed model are validated thanks to experimental test on La0.8Sr0.2Fe0.7Ga0.3O3-δ. Implemented in F.E.A code Abaqus, this model permits studying the design and the process management effects such as chemical shocks on the membrane reliability
MODELISATION DU TRANSPORT DE L'OXYGENE A TRAVERS UN OXYDE CONDUCTEUR MIXTE
National audienceLa production actuelle d'oxygène pure est réalisée essentiellement par cryogénie (-180 °C). Or de nombreux procédés industriels, comme le reformage du méthane, utilisent ce gaz à haute température (entre 650 et 1000 °C suivant le procédé). Il en résulte une perte énergétique importante. Une des solutions envisagées est la séparation de l'oxygène contenu dans l'air à haute température via une membrane céramique dense présentant des propriétés de conduction mixte. Ces membranes ont une structure pérovskite sous-stoechiométrique, qui induit la formation de lacune d'oxygène favorisant une conduction ionique d'oxygène. De plus, la structure pérovskite implique un nombre important de cations favorisant une conduction électrique. À haute température, lorsque la membrane est soumise à un gradient de pression partielle d'oxygène, les anions d'oxygène diffusent à travers celle-ci. Les électrons diffusent dans le sens opposé, afin d'assurer l'électroneutralité. Cela est dû à la propriété de semi-perméation de l'oxygène qui correspond à l'ensemble des mécanismes de transport à travers la membrane (en surface et en volume). La structure cristalline n'est toutefois pas modifiée par cette migration d'espèces. Pour la majorité des conducteurs mixtes, la semi-perméation induit des déformations dites chimiques du même ordre de grandeur que la dilatation thermique. Ainsi pour évaluer les contraintes que subit la membrane au sein d'un réacteur en fonctionnement, un modèle thermo-chimio-mécanique contenant une modélisation complète de la semi-perméation est indispensable. Après avoir décrit les phénomènes de la semi-perméation mis en jeu, plusieurs modèles d'échanges ioniques en surfaces seront étudiés. Finalement, un nouveau modèle sera proposé
Etude et modélisation du comportement thermo‐chimio-mécanique des oxydes conducteurs mixtes
National audienceLa séparation de l'oxygène de l'air est couramment réalisée par distillation cryogénique. Depuis un peu plus de 30 ans, les oxydes conducteurs mixtes semblent constituer une alternative intéressante pour la production d'oxygène ultra pur. L'oxygène est séparé de l'air, à haute température, par conduction ionique à travers une membrane céramique dense. Tous les procédés nécessitant de l'oxygène (oxycombustion, métallurgie, domaine médical, ...) sont des applications possibles de cette technologie. Les conducteurs mixtes sont des matériaux céramiques dans lesquels deux espèces chimiques se déplacent : une espèce ionique et une espèce électronique. Le rapport des conductivités électroniques et ioniques est tel que la neutralité électrique est conservée. Cette propriété est obtenue par dopage d'une céramique (le plus souvent de structure perovskite) qui génère la présence de défauts, notamment des lacunes d'oxygène. Le composé est alors qualifié de sous-stœchiométrique en oxygène. Les écarts à la stœchiométrie sont fonction de l'oxyde de départ, de la température et de l'activité chimique des composés. En service, la fluctuation de la stoéchiométrie, résultant du chargement thermique et du flux des ions oxygène à travers la membrane, occasionne des déformations du réseau cristallin qui se traduisent macroscopiquement par une déformation de la membrane et une modification (faible) des propriétés mécaniques. Afin de confirmer le rôle de ces déformations dites "chimiques" dans la rupture des membranes et d'étudier l'influence de paramètres telles que la géométrie (scellement céramique/métal) ou les conditions opératoires, un modèle macroscopique du comportement thermo-chimio-mécanique de ces céramiques a été développé et implémenté dans le logiciel Abaqus. La modélisation est relativement complète, tant du point de vue du comportement de la membrane que des sollicitations : la déformation chimique est prise en compte par l'intermédiaire d'un comportement thermomécanique dédié ; le transport ionique de l'oxygène est également reproduit via une loi de transport dédiée, en lien avec l'évolution du champ de température. La simulation d'essais de dilatométrie sous différentes atmosphères contrôlées permet d'illustrer les capacités actuelles du modèle ainsi que ses limites. Enfin, ce modèle a permis de simuler les différentes phases de fonctionnement d'un réacteur pilote, développé par Air Liquide. Les prévisions obtenues sont pertinentes et mettent en lumière l'origine de certaines des difficultés actuelles de transfert de la technologie à l'échelle industrielle
Clinical relevance of IDH1/2 mutant allele burden during follow-up in acute myeloid leukemia. A study by the French ALFA group
Assessment of minimal residual disease has emerged as a powerful prognostic factor in acute myeloid leukemia. In this study, we investigated the potential of IDH1/2 mutations as targets for minimal residual disease assessment in acute myeloid leukemia, since these mutations collectively occur in 15–20% of cases of acute myeloid leukemia and now represent druggable targets. We employed droplet digital polymerase chain reaction assays to quantify IDH1R132, IDH2R140, and IDH2R172 mutations on genomic DNA in 322 samples from 103 adult patients with primary IDH1/2 mutant acute myeloid leukemia and enrolled on Acute Leukemia French Association (ALFA) - 0701 or -0702 clinical trials. The median IDH1/2 mutant allele fraction in bone marrow samples was 42.3% (range, 8.2 – 49.9%) at diagnosis of acute myeloid leukemia, and below the detection limit of 0.2% (range
Lower gastrointestinal bleeding—Computed Tomographic Angiography, Colonoscopy or both?
Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment
The Deep Underground Neutrino Experiment (DUNE) will produce world-leading
neutrino oscillation measurements over the lifetime of the experiment. In this
work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in
the neutrino sector, and to resolve the mass ordering, for exposures of up to
100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed
uncertainties on the flux prediction, the neutrino interaction model, and
detector effects. We demonstrate that DUNE will be able to unambiguously
resolve the neutrino mass ordering at a 3 (5) level, with a 66
(100) kt-MW-yr far detector exposure, and has the ability to make strong
statements at significantly shorter exposures depending on the true value of
other oscillation parameters. We also show that DUNE has the potential to make
a robust measurement of CPV at a 3 level with a 100 kt-MW-yr exposure
for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2.
Additionally, the dependence of DUNE's sensitivity on the exposure taken in
neutrino-enhanced and antineutrino-enhanced running is discussed. An equal
fraction of exposure taken in each beam mode is found to be close to optimal
when considered over the entire space of interest
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
International audienceMeasurements of electrons from νe interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of missing energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation
long-baseline neutrino oscillation experiment with a primary physics goal of
observing neutrino and antineutrino oscillation patterns to precisely measure
the parameters governing long-baseline neutrino oscillation in a single
experiment, and to test the three-flavor paradigm. DUNE's design has been
developed by a large, international collaboration of scientists and engineers
to have unique capability to measure neutrino oscillation as a function of
energy in a broadband beam, to resolve degeneracy among oscillation parameters,
and to control systematic uncertainty using the exquisite imaging capability of
massive LArTPC far detector modules and an argon-based near detector. DUNE's
neutrino oscillation measurements will unambiguously resolve the neutrino mass
ordering and provide the sensitivity to discover CP violation in neutrinos for
a wide range of possible values of . DUNE is also uniquely
sensitive to electron neutrinos from a galactic supernova burst, and to a broad
range of physics beyond the Standard Model (BSM), including nucleon decays.
DUNE is anticipated to begin collecting physics data with Phase I, an initial
experiment configuration consisting of two far detector modules and a minimal
suite of near detector components, with a 1.2 MW proton beam. To realize its
extensive, world-leading physics potential requires the full scope of DUNE be
completed in Phase II. The three Phase II upgrades are all necessary to achieve
DUNE's physics goals: (1) addition of far detector modules three and four for a
total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power
from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary
muon spectrometer with a magnetized, high-pressure gaseous argon TPC and
calorimeter.Comment: Contribution to Snowmass 202
Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora
The Pandora Software Development Kit and algorithm libraries provide
pattern-recognition logic essential to the reconstruction of particle
interactions in liquid argon time projection chamber detectors. Pandora is the
primary event reconstruction software used at ProtoDUNE-SP, a prototype for the
Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at
CERN, is exposed to a charged-particle test beam. This paper gives an overview
of the Pandora reconstruction algorithms and how they have been tailored for
use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam
background particles, the simulated reconstruction and identification
efficiency for triggered test-beam particles is above 80% for the majority of
particle type and beam momentum combinations. Specifically, simulated 1 GeV/
charged pions and protons are correctly reconstructed and identified with
efficiencies of 86.1% and 84.1%, respectively. The efficiencies
measured for test-beam data are shown to be within 5% of those predicted by the
simulation.Comment: 39 pages, 19 figure
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from interactions are crucial for the Deep
Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as
searches for physics beyond the standard model, supernova neutrino detection,
and solar neutrino measurements. This article describes the selection and
reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector.
ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and
operated at CERN as a charged particle test beam experiment. A sample of
low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy
scale with two techniques. An electron energy calibration based on a cosmic ray
muon sample uses calibration constants derived from measured and simulated
cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert
reconstructed charge to electron energy. In addition, the effects of detector
response to low-energy electron energy scale and its resolution including
readout electronics threshold effects are quantified. Finally, the relation
between the theoretical and reconstructed low-energy electron energy spectrum
is derived and the energy resolution is characterized. The low-energy electron
selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the
energy resolution improves from about 40% to 25% at 50~MeV. These results are
used to validate the expected capabilities of the DUNE far detector to
reconstruct low-energy electrons.Comment: 19 pages, 10 figure
- …