1,794 research outputs found

### The design of decentralised controllers for large scale systems

Bibliography:leaves 203-205.Decentralised control schemes are becoming more common in industry as the advantages of decentralised control become more apparent. These advantages include fewer tuning parameters than centralised controllers, the simplification and cost reduction of hardware requirements and greater reliability. In addition the application of decentralised controller design to large scale systems allows established CAD methods to be implemented easily and efficiently. When the control engineer designs a distributed controller the system is divided up into a number of subsystems and a controller designed for each subsystem. The controllers are designed independently for each subsystem ignoring any interaction that may occur between the different subsystems. In terms of the input-output representation of the system this means that the matrix representing the controller will be in a block diagonal form. In general the interactions between the different subsystems will not be negligible. In some cases the interactions will be such that stabilising the individual subsystems will not be sufficient to stabilise the system as a whole. Stability theorems are required to enable the designer to check if the decentralised controller that he has designed will in fact stabilise the system as a whole. Such stability theorems have been devised although at present they are too conservative. However even with such theorems available the designer must still select the subsystems to be controlled in such a way as to satisfy the conditions laid down for stability. The stability theories usually are based on a particular matrix structure. If the matrix representing the system possesses a structure detailed by the stability theorem in question then, subject to various conditions, the system as a whole will be stable under decentralised control. In this thesis a number of different matrix structures are considered that give information as to the stability of the closed loop system. Methods are developed that allow the designer to rearrange the matrix in such a way as to obtain a particular structure, if this is possible

### Analysis of the accuracy and convergence of equation-free projection to a slow manifold

In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis, and A. Zagaris, Projecting to a
Slow Manifold: Singularly Perturbed Systems and Legacy Codes, SIAM J. Appl.
Dyn. Syst. 4 (2005) 711-732], we developed a class of iterative algorithms
within the context of equation-free methods to approximate low-dimensional,
attracting, slow manifolds in systems of differential equations with multiple
time scales. For user-specified values of a finite number of the observables,
the m-th member of the class of algorithms (m = 0, 1, ...) finds iteratively an
approximation of the appropriate zero of the (m+1)-st time derivative of the
remaining variables and uses this root to approximate the location of the point
on the slow manifold corresponding to these values of the observables. This
article is the first of two articles in which the accuracy and convergence of
the iterative algorithms are analyzed. Here, we work directly with explicit
fast--slow systems, in which there is an explicit small parameter, epsilon,
measuring the separation of time scales. We show that, for each m = 0, 1, ...,
the fixed point of the iterative algorithm approximates the slow manifold up to
and including terms of O(epsilon^m). Moreover, for each m, we identify
explicitly the conditions under which the m-th iterative algorithm converges to
this fixed point. Finally, we show that when the iteration is unstable (or
converges slowly) it may be stabilized (or its convergence may be accelerated)
by application of the Recursive Projection Method. Alternatively, the
Newton-Krylov Generalized Minimal Residual Method may be used. In the
subsequent article, we will consider the accuracy and convergence of the
iterative algorithms for a broader class of systems-in which there need not be
an explicit small parameter-to which the algorithms also apply

### Early evolution of electron cyclotron driven current during suppression of tearing modes in a circular tokamak

When electron cyclotron (EC) driven current is first applied to the inside of
a magnetic island, the current spreads throughout the island and after a short
period achieves a steady level. Using a two equation fluid model for the EC
current that allows us to examine this early evolution in detail, we analyze
high-resolution simulations of a 2/1 classical tearing mode in a low-beta large
aspect-ratio circular tokamak. These simulations use a nonlinear 3D reduced-MHD
fluid model and the JOREK code. During the initial period where the EC driven
current grows and spreads throughout the magnetic island, it is not a function
of the magnetic flux. However, once it has reached a steady-state, it should be
a flux function. We demonstrate numerically that if sufficiently resolved
toroidally, the steady-state EC driven current becomes approximately a flux
function. We discuss the physics of this early period of EC evolution and its
impact on the size of the magnetic island.Comment: 12 pages, 7 figure

### High spatial resolution observations of CUDSS14A: a SCUBA-selected ultraluminous galaxy at high redshift

The definitive version is available at www.blackwell-synergy.com '. Copyright Blackwell Publishing DOI : 10.1046/j.1365-8711.2000.03822.xWe present a high-resolutionmillimetre interferometric image of the brightest SCUBA- selected galaxy from the Canada-UK deep SCUBA survey (CUDSS). We make a very clear detection at 1.3 mm, but fail to resolve any structure in the source.Peer reviewe

### Variability of the Centimeter-Submillimeter Spectrum and Polarization of 3C 273 during Outburst

Original article can be found at: http://www.journals.uchicago.edu/ApJ/--Copyright University of Chicago Press/ AASCentimeter to submillimeter total flux and polarization monitoring data are used to investigate the nature of a prominent flare in the quasar 3C 273 during 1995/6. After removal of the quiescent level, the resulting “flare spectra" are well fitted by a simple homogeneous synchrotron source model, which in turn allows the movement of the self-absorption turnover to be tracked during the flare. Both the flare amplitude/time delay relationship and the overall spectral evolution are qualitatively consistent with existing models. The early evolution of the spectrum is best determined and is shown to be in excellent agreement with the Compton stage of the Marscher & Gear shock model. However, the polarization behavior during the flare is different at millimeter and centimeter wavelengths and the observations are difficult to reconcile with a simple transverse shock. They are, however, consistent with a conical shock for which the observed polarization properties vary with distance along the jet. Such variations may be caused, for example, by a change in cone angle owing to disruption caused by the growing component of the magnetic field parallel to the jet axis or by a moderate change in viewing angle.Peer reviewe

### The Canada-UK Deep Sub-Millimeter Survey II: First identifications, redshifts and implications for galaxy evolution

Identifications are sought for 12 sub-mm sources detected by Eales et al
(1998). Six are securely identified, two have probable identifications and four
remain unidentified with I_AB > 25. Spectroscopic and estimated photometric
redshifts indicate that four of the sources have z < 1, and four have 1 < z <
3, with the remaining four empty field sources probably lying at z > 3. The
spectral energy distributions of the identifications are consistent with those
of high extinction starbursts such as Arp 220. The far-IR luminosities of the
sources at z > 0.5 are of order 3 x 10^12 h_50^-2 L_sun, i.e. slightly larger
than that of Arp 220. Based on this small sample, the cumulative bolometric
luminosity function shows strong evolution to z ~ 1, but weaker or possibly
even negative evolution beyond. The redshift dependence of the far-IR
luminosity density does not appear, at this early stage, to be inconsistent
with that seen in the ultraviolet luminosity density. Assuming that the energy
source in the far-IR is massive stars, the total luminous output from
star-formation in the Universe is probably dominated by the far-IR emission.
The detected systems have individual star-formation rates (exceeding 300
h_50^-2 M_O yr^-1) that are much higher than seen in the ultraviolet selected
samples, and which are sufficient to form substantial stellar populations on
dynamical timescales of 10^8 yr. The association with merger-like morphologies
and the obvious presence of dust makes it attractive to identify these systems
as forming the metal-rich spheroid population, in which case we would infer
that much of this activity has occurred relatively recently, at z ~ 2.Comment: 17 pages text + 14 figures. Accepted for publication in the
Astrophysical Journal. Gzipped tar file contains one text.ps file for text
and tables, one Fig2.jpg file for Fig 2, and 13 Fig*.ps files for the
remaining figure

### Polarimetric Observations of 15 AGNs at High Frequencies

Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe have obtained total and polarized intensity images of 15 AGNs with the VLBA at 7 mm at 17 epochs from 25/26 March 1998 to 14 April 2001. The VLBA observations are accompanied at many epochs by simultaneous mea- surements of polarization at 1.35/0.85 mm as well as less frequent simultaneous optical polarization measurements. We discuss the similarities and complexities of polarization behavior at different frequencies along with the VLBI properties

### Coupled KdV equations derived from atmospherical dynamics

Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
$y$-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
$\tau$-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure

- …