3,320 research outputs found
Intersecting Faces: Non-negative Matrix Factorization With New Guarantees
Non-negative matrix factorization (NMF) is a natural model of admixture and
is widely used in science and engineering. A plethora of algorithms have been
developed to tackle NMF, but due to the non-convex nature of the problem, there
is little guarantee on how well these methods work. Recently a surge of
research have focused on a very restricted class of NMFs, called separable NMF,
where provably correct algorithms have been developed. In this paper, we
propose the notion of subset-separable NMF, which substantially generalizes the
property of separability. We show that subset-separability is a natural
necessary condition for the factorization to be unique or to have minimum
volume. We developed the Face-Intersect algorithm which provably and
efficiently solves subset-separable NMF under natural conditions, and we prove
that our algorithm is robust to small noise. We explored the performance of
Face-Intersect on simulations and discuss settings where it empirically
outperformed the state-of-art methods. Our work is a step towards finding
provably correct algorithms that solve large classes of NMF problems
Efficient approaches for escaping higher order saddle points in non-convex optimization
Local search heuristics for non-convex optimizations are popular in applied
machine learning. However, in general it is hard to guarantee that such
algorithms even converge to a local minimum, due to the existence of
complicated saddle point structures in high dimensions. Many functions have
degenerate saddle points such that the first and second order derivatives
cannot distinguish them with local optima. In this paper we use higher order
derivatives to escape these saddle points: we design the first efficient
algorithm guaranteed to converge to a third order local optimum (while existing
techniques are at most second order). We also show that it is NP-hard to extend
this further to finding fourth order local optima
Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms
Tensor rank and low-rank tensor decompositions have many applications in
learning and complexity theory. Most known algorithms use unfoldings of tensors
and can only handle rank up to for a -th order
tensor in . Previously no efficient algorithm can decompose
3rd order tensors when the rank is super-linear in the dimension. Using ideas
from sum-of-squares hierarchy, we give the first quasi-polynomial time
algorithm that can decompose a random 3rd order tensor decomposition when the
rank is as large as .
We also give a polynomial time algorithm for certifying the injective norm of
random low rank tensors. Our tensor decomposition algorithm exploits the
relationship between injective norm and the tensor components. The proof relies
on interesting tools for decoupling random variables to prove better matrix
concentration bounds, which can be useful in other settings
Generalizing Amdahl’s Law for Power and Energy
Extending Amdahl\u27s law to identify optimal power-performance configurations requires considering the interactive effects of power, performance, and parallel overhead
- …