1,155 research outputs found
Coherent population oscillations with nitrogen-vacancy color centers in diamond
We present results of our research on two-field (two-frequency) microwave
spectroscopy in nitrogen-vacancy (NV-) color centers in a diamond. Both fields
are tuned to transitions between the spin sublevels of the NV- ensemble in the
3A2 ground state (one field has a fixed frequency while the second one is
scanned). Particular attention is focused on the case where two microwaves
fields drive the same transition between two NV- ground state sublevels (ms=0
-> ms=+1). In this case, the observed spectra exhibit a complex narrow
structure composed of three Lorentzian resonances positioned at the pump-field
frequency. The resonance widths and amplitudes depend on the lifetimes of the
levels involved in the transition. We attribute the spectra to coherent
population oscillations induced by the two nearly degenerate microwave fields,
which we have also observed in real time. The observations agree well with a
theoretical model and can be useful for investigation of the NV relaxation
mechanisms.Comment: 17 page
Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond
Negatively-charged nitrogen-vacancy (NV) centers in diamond have
generated much recent interest for their use in sensing. The sensitivity
improves when the NV ground-state microwave transitions are narrow, but these
transitions suffer from inhomogeneous broadening, especially in high-density NV
ensembles. To better understand and remove the sources of broadening, we
demonstrate room-temperature spectral "hole burning" of the NV ground-state
transitions. We find that hole burning removes the broadening caused by
magnetic fields from C nuclei and demonstrate that it can be used for
magnetic-field-insensitive thermometry.Comment: Main text: 5 pages, 4 figures. Supplement: 6 pages, 3 figure
Examining the impact of meaning and resilience on survivors\u27 life satisfaction after Hurricane Harvey
The experience of a traumatic event such as a natural disaster can often lead individuals to suffer a variety of negative sequelae, including the development of posttraumatic stress symptoms. However, certain positive psychological constructs like meaning and resilience have been shown to mitigate these consequences. The purpose of this study was to explore the contributions of meaning and resilience to the life satisfaction of individuals (N = 55) impacted by 2017’s Hurricane Harvey. It was hypothesized that not only would meaning and resilience be significantly and positively related to life satisfaction but that meaning would contribute more to the prediction of life satisfaction than resilience. Significant positive relationships were found between meaning and life satisfaction (r = .51, p ≤ .05) and between resilience and life satisfaction (r = .32, p ≤ .05) as was expected. After conducting a multiple regression analysis, meaning was also found to significantly predict life satisfaction (β = .46, t(54) = 3.48, p = .001, pr2 = .19), and did so to a greater extent than resilience (β = .13, t(54) = .97, p = .34, pr2 = .02), which was not a statistically significant predictor in this instance. The implications of these findings are discussed, along with study strengths, limitations, and directions for research
Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF
Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,) cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.Séptimo Programa Marco de la Comunidad Europea de la Energía Atómica (Euratom)-Proyecto CHANDA (No. 605203)Narodowe Centrum Nauki (NCN)-UMO-2012/04/M/ST2/00700-UMO-2016/22/M/ST2/00183Croatian Science Foundation-HRZZ 168
Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states
We report on cw measurements of probe beam absorption and four-wave-mixing
spectra in a Rb magneto-optical trap taken while the trap is in
operation. The trapping beams are used as pump light. We concentrate on the
central feature of the spectra at small pump-probe detuning and attribute its
narrow resonant structures to the superposition of Raman transitions between
light-shifted sublevels of the ground atomic state and to atomic recoil
processes. These two contributions have different dependencies on trap
parameters and we show that the former is inhomogeneously broadened. The strong
dependence of the spectra on the probe-beam polarization indicates the
existence of large optical anisotropy of the cold-atom sample, which is
attributed to the recoil effects. We point out that the recoil-induced
resonances can be isolated from other contributions, making pump-probe
spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure
Multiband theory of quantum-dot quantum wells: Dark excitons, bright excitons, and charge separation in heteronanostructures
Electron, hole, and exciton states of multishell CdS/HgS/CdS quantum-dot
quantum well nanocrystals are determined by use of a multiband theory that
includes valence-band mixing, modeled with a 6-band Luttinger-Kohn Hamiltonian,
and nonparabolicity of the conduction band. The multiband theory correctly
describes the recently observed dark-exciton ground state and the lowest,
optically active, bright-exciton states. Charge separation in pair states is
identified. Previous single-band theories could not describe these states or
account for charge separation.Comment: 10 pages of ReVTex, 6 ps figures, submitted to Phys. Rev.
Selective addressing of high-rank atomic polarization moments
We describe a method of selective generation and study of polarization
moments of up to the highest rank possible for a quantum state with
total angular momentum . The technique is based on nonlinear magneto-optical
rotation with frequency-modulated light. Various polarization moments are
distinguished by the periodicity of light-polarization rotation induced by the
atoms during Larmor precession and exhibit distinct light-intensity and
frequency dependences. We apply the method to study polarization moments of
Rb atoms contained in a vapor cell with antirelaxation coating. Distinct
ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles,
appear in the magnetic-field dependence of the optical rotation. The use of the
highest-multipole resonances has important applications in quantum and
nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure
Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of Cesium
We present and experimental and theoretical study of nonlinear
magneto-optical resonances observed in the fluorescence to the ground state
from the 7P_{3/2} state of cesium, which was populated directly by laser
radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were
populated via cascade transitions that started from the 7P_{3/2} state and
passed through various intermediate states. The laser-induced fluorescence
(LIF) was observed as the magnetic field was scanned through zero. Signals were
recorded for the two orthogonal, linearly polarized components of the LIF. We
compared the measured signals with the results of calculations from a model
that was based on the optical Bloch equations and averaged over the Doppler
profile. This model was adapted from a model that had been developed for D_1
and D_2 excitation of alkali metal atoms. The calculations agree quite well
with the measurements, especially when taking into account the fact that some
experimental parameters were only estimated in the model.Comment: small changes to text of previous version; 12 pages, 8 figure
Competitive stochastic noises in coherently driven two-level atoms and quantum interference
A system of coherently-driven two-level atoms is analyzed in presence of two
independent stochastic perturbations: one due to collisions and a second one
due to phase fluctuations of the driving field. The behaviour of the quantum
interference induced by the collisional noise is considered in detail. The
quantum-trajectory method is utilized to reveal the phase correlations between
the dressed states involved in the interfering transition channels. It is shown
that the quantum interference induced by the collisional noise is remarkably
robust against phase noise. This effect is due to the fact that the phase
noise, similarly to collisions, stabilizes the phase-difference between the
dressed states.Comment: accepted for publication in J. Opt.
- …