25 research outputs found

    Femtocell Networks: A Survey

    Full text link
    The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hotspots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells, also called home base-stations, which are data access points installed by home users get better indoor voice and data coverage. In this article, we overview the technical and business arguments for femtocells, and describe the state-of-the-art on each front. We also describe the technical challenges facing femtocell networks, and give some preliminary ideas for how to overcome them.Comment: IEEE Communications Magazine, vol. 46, no.9, pp. 59-67, Sept. 200

    Optimal Dataflow Scheduling on a Heterogeneous Multiprocessor With Reduced Response Time Bounds

    Get PDF
    Heterogeneous computing platforms with multiple types of computing resources have been widely used in many industrial systems to process dataflow tasks with pre-defined affinity of tasks to subgroups of resources. For many dataflow workloads with soft real-time requirements, guaranteeing fast and bounded response times is often the objective. This paper presents a new set of analysis techniques showing that a classical real-time scheduler, namely earliest-deadline first (EDF), is able to support dataflow tasks scheduled on such heterogeneous platforms with provably bounded response times while incurring no resource capacity loss, thus proving EDF to be an optimal solution for this scheduling problem. Experiments using synthetic workloads with widely varied parameters also demonstrate that the magnitude of the response time bounds yielded under the proposed analysis is reasonably small under all scenarios. Compared to the state-of-the-art soft real-time analysis techniques, our test yields a 68% reduction on response time bounds on average. This work demonstrates the potential of applying EDF into practical industrial systems containing dataflow-based workloads that desire guaranteed bounded response times

    Demographic, clinical, and service-use characteristics related to the clinician’s recommendation to transition from child to adult mental health services

    Get PDF
    Purpose: The service configuration with distinct child and adolescent mental health services (CAMHS) and adult mental health services (AMHS) may be a barrier to continuity of care. Because of a lack of transition policy, CAMHS clinicians have to decide whether and when a young person should transition to AMHS. This study describes which characteristics are associated with the clinicians’ advice to continue treatment at AMHS. Methods: Demographic, family, clinical, treatment, and service-use characteristics of the MILESTONE cohort of 763 young people from 39 CAMHS in Europe were assessed using multi-informant and standardized assessment tools. Logistic mixed models were fitted to assess the relationship between these characteristics and clinicians’ transition recommendations. Results: Young people with higher clinician-rated severity of psychopathology scores, with self- and parent-reported need for ongoing treatment, with lower everyday functional skills and without self-reported psychotic experiences were more likely to be recommended to continue treatment. Among those who had been recommended to continue treatment, young people who used psychotropic medication, who had been in CAMHS for more than a year, and for whom appropriate AMHS were available were more likely to be recommended to continue treatment at AMHS. Young people whose parents indicated a need for ongoing treatment were more likely to be recommended to stay in CAMHS. Conclusion: Although the decision regarding continuity of treatment was mostly determined by a small set of clinical characteristics, the recommendation to continue treatment at AMHS was mostly affected by service-use related characteristics, such as the availability of appropriate services

    The application of programmable DSPs in mobile communications

    No full text

    Space-time fronthaul compression of complex baseband uplink LTE signals

    No full text
    In this paper, we propose space-time fronthaul compression of baseband uplink LTE signals for cellular networks, in which baseband units (BBUs) support remote radio heads (RRHs) through fronthaul links. In particular, we assume massive antenna arrays in which the number of antennas in a RRH is much larger than the number of active users. The proposed method consists of two phases: dimensionality reduction phase and individual quantization phase. The key idea of the first phase is to apply principal component analysis (PCA). It performs low-rank approximation of a matrix - composed of received signals - by exploiting the correlation of the received signals across space and time. In the second phase, our method individually quantizes the dimensionality-reduced signal by applying transform coding with bit allocation to reduce the number of quantization bits. An LTE link-level simulator provides numerical results which show that the method achieves up to 8 ?? compression ratio for the uplink with 64 antennas and 4 active users, along with improvement in communication system performance as a result of denoising. ?? 2016 IEEE