97 research outputs found

    On the Formation of CO2 and Other Interstellar Ices

    Full text link
    We investigate the formation and evolution of interstellar dust-grain ices under dark-cloud conditions, with a particular emphasis on CO2. We use a three-phase model (gas/surface/mantle) to simulate the coupled gas--grain chemistry, allowing the distinction of the chemically-active surface from the ice layers preserved in the mantle beneath. The model includes a treatment of the competition between barrier-mediated surface reactions and thermal-hopping processes. The results show excellent agreement with the observed behavior of CO2, CO and water ice in the interstellar medium. The reaction of the OH radical with CO is found to be efficient enough to account for CO2 ice production in dark clouds. At low visual extinctions, with dust temperatures ~12 K, CO2 is formed by direct diffusion and reaction of CO with OH; we associate the resultant CO2-rich ice with the observational polar CO2 signature. CH4 ice is well correlated with this component. At higher extinctions, with lower dust temperatures, CO is relatively immobile and thus abundant; however, the reaction of H and O atop a CO molecule allows OH and CO to meet rapidly enough to produce a CO:CO2 ratio in the range ~2--4, which we associate with apolar signatures. We suggest that the observational apolar CO2/CO ice signatures in dark clouds result from a strongly segregated CO:H2O ice, in which CO2 resides almost exclusively within the CO component. Observed visual-extinction thresholds for CO2, CO and H2O are well reproduced by depth-dependent models. Methanol formation is found to be strongly sensitive to dynamical timescales and dust temperatures.Comment: 22 pages, 12 figure

    Formation of hydroxylamine on dust grains via ammonia oxidation

    Full text link
    The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH2_2OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH2_2OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH2_2OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH2_2OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH3_3. Suggestions of conditions for future observations are provided.Comment: 9 pages, 9 figure

    From Prestellar to Protostellar Cores II. Time Dependence and Deuterium Fractionation

    Full text link
    We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense-cloud core to a protostellar core, by solving a gas-grain reaction network applied to a 1-D radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii r≲100r\lesssim 100 AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels in-falling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C+^+, which reacts with CH4_4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the 1-D infall of a fluid parcel at constant disk radii. The species CH3_3OCH3_3 and HCOOCH3_3 increase in abundance in 104−10510^4-10^5 yr at the fixed warm temperature; both also have high D/H ratios.Comment: accepted to ApJ. 55 pages, 7 figures, 3 table

    Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide

    Full text link
    The largest non-cyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a non-terminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic.Comment: This is the author's version of the work. It is posted here by permission of the AAAS for non-commercial use. The definitive version was published in Science 345, 1584 (2014), doi:10.1126/science.125667
    • …
    corecore