119,196 research outputs found
Optimization of micromachined relex klystrons for operation at terahertz frequencies
New micromachining techniques now provide us
with the technology to fabricate reflex klystron oscillators with dimensions suitable for operation in the terahertz region of the electromagnetic spectrum. For the success of these devices, accurate designs are required since the optimization of certain parameters is critical to obtaining useful amounts of ac power. Classical models for device design have long been in existence,
but these are no longer valid at terahertz frequencies. For this reason, we have developed a simulation tool, specifically aimed at the design of terahertz frequency reflex klystrons. The tool, based on the Monte Carlo algorithm, includes loss mechanisms and takes into account the main peculiarities expected for device
operation at terahertz frequencies. In this study, the tool is used to study the influence of the electron beam aperture angle and cavity dimensions (particularly the grid spacing) on ac power generation. The results demonstrate that aperture angles of less than 10 are necessary for the optimization of output power. It is
also found that the power output is highly sensitive to the distance between the grids
Recommended from our members
Using the Spreadsheet as a Tool for Teaching the Fundamentals of Engineering
This paper will demonstrate how the electronic spreadsheet has been used in a freshman level Fundamentals of Engineering course to prepare students for maximizing their analytical skills with the most ubiquitous analytical tool available today.Cockrell School of Engineerin
Momentum transfer to small particles by aloof electron beams
The force exerted on nanoparticles and atomic clusters by fast passing
electrons like those employed in transmission electron microscopes are
calculated and integrated over time to yield the momentum transferred from the
electrons to the particles. Numerical results are offered for metallic and
dielectric particles of different sizes (0-500 nm in diameter) as well as for
carbon nanoclusters. Results for both linear and angular momentum transfers are
presented. For the electron beam currents commonly employed in electron
microscopes, the time-averaged forces are shown to be comparable in magnitude
to laser-induced forces in optical tweezers. This opens up the possibility to
study optically-trapped particles inside transmission electron microscopes.Comment: 6 pages, 5 figure
Collective oscillations in optical matter
Atom and nanoparticle arrays trapped in optical lattices are shown to be
capable of sustaining collective oscillations of frequency proportional to the
strength of the external light field. The spectrum of these oscillations
determines the mechanical stability of the arrays. This phenomenon is studied
for dimers, strings, and two-dimensional planar arrays. Laterally confined
particles free to move along an optical channel are also considered as an
example of collective motion in partially-confined systems. The fundamental
concepts of dynamical response in optical matter introduced here constitute the
basis for potential applications to quantum information technology and signal
processing. Experimental realizations of these systems are proposed.Comment: 4 figures. Optics Express (in press
Housing Market in Malaga: An Application of the Hedonic Methodology
The analysis of the factors that determine the price of the second-hand house, by means of the use of the hedonic methodology, constitutes the central objective of this work. This study has been applied to the market of the house corresponding to the municipality of Malaga (Spain), of where a sample of 1996 transactions, made during 2003, has been selected.This information has been facilitated by a real estate agency. The obtained results have allowed to identify those characteristics of the houses that more affect their price and quantify this influence, valuing it in monetary terms. It has been stated that the contribution of some structural attributes (the floor area, the number of toilets, the presence of private garage or the luminosity of the house) and others of location (proximity to the sea or downtown, and location in a certain zone) affects the price of the house decisively.
Modulated rotating waves in the magnetized spherical Couette system
We present a study devoted to a detailed description of modulated rotating
waves (MRW) in the magnetized spherical Couette system. The set-up consists of
a liquid metal confined between two differentially rotating spheres and
subjected to an axially applied magnetic field. When the magnetic field
strength is varied, several branches of MRW are obtained by means of three
dimensional direct numerical simulations (DNS). The MRW originate from parent
branches of rotating waves (RW) and are classified according to Rand's (Arch.
Ration. Mech. Anal 79:1-37, 182) and Coughling & Marcus (J. Fluid Mech.
234:1-18,1992) theoretical description. We have found relatively large
intervals of multistability of MRW at low magnetic field, corresponding to the
radial jet instability known from previous studies. However, at larger magnetic
field, corresponding to the return flow regime, the stability intervals of MRW
are very narrow and thus they are unlikely to be found without detailed
knowledge of their bifurcation point. A careful analysis of the spatio-temporal
symmetries of the most energetic modes involved in the different classes of MRW
will allow in the future a comparison with the HEDGEHOG experiment, a
magnetized spherical Couette device hosted at the Helmholtz-Zentrum
Dresden-Rossendorf.Comment: Contains 3 tables and 8 figures. Published in the Journal of
Nonlinear Scienc
Li and Be depletion in metal-poor subgiants
Original article can be found at: http://www.aanda.org/--Copyright The European Southern Observatory (ESO) DOI : 10.1051/0004-6361:20053182Peer reviewe
- …