7,033 research outputs found

    Robust continuous-variable entanglement of microwave photons with cavity electromechanics

    Full text link
    We investigate the controllable generation of robust photon entanglement with a circuit cavity electromechanical system, consisting of two superconducting coplanar waveguide cavities (CPWC's) capacitively coupled by a nanoscale mechanical resonator (MR). We show that, with this electromechanical system, two-mode continuous-variable entanglement of cavity photons can be engineered deterministically either via coherent control on the dynamics of the system, or through a dissipative quantum dynamical process. The first scheme, operating in the strong coupling regime, explores the excitation of the cavity Bogoliubov modes, and is insensitive to the initial thermal noise. The second one is based on the reservoir-engineering approach, which exploits the mechanical dissipation as a useful resource to perform ground state cooling of two delocalized cavity Bogoliubov modes. The achieved amount of entanglement in both schemes is determined by the relative ratio of the effective electromechanical coupling strengths, which thus can be tuned and made much lager than that in previous studies.Comment: To appear in PRA, published versio

    Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    Full text link
    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential (μ\muPNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the μ\mu-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of u,du, d quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and properties of the mixed phase would bring relevant information on the expected chemical potential dependence of the Polyakov Loop contribution.Comment: 11 pages, 10 figures, 1 Table, accepted for publication by Phys. Rev.

    On the Puzzle of Long and Short Gamma-Ray Bursts

    Full text link
    In this paper we give a brief review of our recent studies on the long and short gamma-ray bursts (GRBs) detected Swift, in an effort to understand the puzzle of classifying GRBs. We consider that it is still an appealing conjecture that both long and short GRBs are drawn from the same parent sample by observational biases.Comment: 3 pages, 1 figur

    Spatio-Temporal Usage Patterns of Dockless Bike-Sharing Service Linking to a Metro Station: A Case Study in Shanghai, China

    Get PDF
    The dockless bike-sharing (DLBS) system serves as a link between metro stations and travelers\u27 destinations (or originations). This paper aims to uncover spatio-temporal usage patterns of dockless bike-sharing service linking to metro stations for supporting scientific planning and management of the dockless bike-sharing system. A powerful visualization tool was used to analyze the differences in usage patterns in workdays and weekends. The travel distance distributions of using dockless bike-sharing near metro stations were investigated to shed light on the service area of the dockless bike-sharing system. Agglomerative hierarchical clustering was applied to analyze differences in usage patterns of metro stations located in different areas. The results show that the usage patterns of dockless bike-sharing on weekends are different from those on workdays. The average travel distance using the dockless bike-sharing system at weekends is significantly larger than that of workdays. The travel distance distribution could be nicely fitted by the Frechet distribution of the Generalized Extreme Value (GEV) distribution family. The usage characteristics of shared bikes are correlated with land use and population density around metro stations. No matter in urban or suburban areas, there is a great demand for bike-sharing in densely populated areas with intensive land development, such as university towns in suburban areas. This study improves the understandings regarding the usage patterns of the DLBS system serving as a link between the final destinations (or originations) and metro stations. The results can be helpful to the operation and demand management of DLBS. \ua9 2020 by the authors

    Engineering two-mode entangled states between two superconducting resonators by dissipation

    Full text link
    We present an experimental feasible scheme to synthesize two-mode continuous-variable entangled states of two superconducting resonators that are interconnected by two gap-tunable superconducting qubits. We show that, with each artificial atom suitably driven by a bichromatic microwave field to induce sidebands in the qubit-resonator coupling, the stationary state of the photon fields in the two resonators can be cooled and steered into a two-mode squeezed vacuum state via a dissipative quantum dynamical process, while the superconducting qubits remain in their ground states. In this scheme the qubit decay plays a positive role and can help drive the system to the target state, which thus converts a detrimental source of noise into a resource.Comment: 4figures,5page
    • …
    corecore