7,648 research outputs found
Hierarchical tapered bar elements undergoing axial deformation
A method is described to model the dynamics of tapered axial bars of various cross sections based on the well-known Craig/Bampton component mode synthesis technique. This element is formed in terms of the static constraint modes and interface restrained normal modes. This is in contrast with the finite elements as implemented in NASTRAN where the interface restrained normal modes are neglected. These normal modes are in terms of Bessel functions. Restoration of a few of these modes leads to higher accuracy with fewer generalized coordinates. The proposed models are hierarchical so that all lower order element matrices are embedded in higher order element matrices. The advantages of this formulation compared to standard NASTRAN truss element formulation are demonstrated through simple numerical examples
Investigation of weak itinerant ferromagnetism and critical behavior of YNi
The weak itinerant ferromagnetic behavior of YNi is investigated
through magnetic, transport and calorimetric measurements. The low value of
saturation moment, large Rhodes-Wohlfarth ratio, large value of the linear term
in heat capacity and Fermi liquid like resistivity behavior with enhanced
electron-electron scattering contribution establish firmly the weak itinerant
ferromagetic nature of the sample. The critical exponents associated with the
paramagnetic to ferromagnetic transition are also investigated from
magnetization isotherms using modified Arrott plot, Kouvel-Fisher plot and
critical isotherm technique. The more accurate Kouvel-Fisher plot provides the
critical exponents to be = 0.306, = 1.401 and =
5.578. These values are markedly different from the mean field values and
correspond closely to the two dimensional Ising spin system with long range
spin spin interaction.Comment: Physical Review B 84, 184414 (2011
Transient loads analysis for space flight applications
A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example
Fe-spin reorientation in PrFeAsO : Evidences from resistivity and specific heat studies
We report the magnetic field dependence of resistivity () and specific
heat () for the non-superconducting PrFeAsO compound. Our study shows a
hitherto unobserved anomaly at in the resistivity and specific heat
data which arises as a result of the interplay of antiferromagnetic (AFM) Pr
and Fe sublattices. Below the AFM transition temperature (), Pr
moment orders along the crystallographic c axis and its effect on the iron
subsystem causes a reorientation of the ordered inplane Fe moments in a
direction out of the plane. Application of magnetic field introduces
disorder in the AFM Pr sublattice, which, in turn, reduces the out-of-plane
Pr-Fe exchange interaction responsible for Fe spin reorientation. Both in
() and curves, the peak at broadens with the
increase of due to the introduction of the disorder in the AFM Pr
sublattice by magnetic field. In () curve, the peak shifts towards
lower temperature with and disappears above 6 T while in curve
the peak remains visible up to 14 T. The broadening of the anomaly at
in with increasing further confirms that magnetic
field induces disorder in the AFM Pr sublattice.Comment: 8 pages, 10 Figure
Total cross sections for neutron-nucleus scattering
Systematics of neutron scattering cross sections on various materials for
neutron energies up to several hundred MeV are important for ADSS applications.
Ramsauer model is well known and widely applied to understand systematics of
neutron nucleus total cross sections. In this work, we examined the role of
nuclear effective radius parameter (r) on Ramsauer model fits of neutron
total cross sections. We performed Ramsauer model global analysis of the
experimental neutron total cross sections reported by W. P. Abfalterer, F. B.
Bateman, {\it et. al.,}, from 20MeV to 550MeV for nuclei ranging from Be to U .
The global fit functions which can fit total cross section data over periodic
table are provided along with the required global set of parameters. The global
fits predict within deviation to data, showing the scope for
improvement. It has been observed that a finer adjustment of r parameter
alone can give very good Ramsauer model description of neutron total scattering
data within deviation. The required r values for Ramsauer model
fits are shown as a function of nuclear mass number and an empirical formula is
suggested for r values as a function of mass number. In optical model
approach for neutron scattering, we have modified the real part of
Koning-Deleroche potentails to fit the neutron total cross sections using SCAT2
code. The modified potentails have a different energy dependence beyond 200MeV
of neutron energy and fit the total cross sections from Al to Pb.Comment: 9 pages, 20figures, Poster number ND-1457, ND2010 Conference in Kore
- …