781 research outputs found
Recommended from our members
Conformational modulation of sequence recognition in synthetic macromolecules
The different triplet sequences in high molecular weight aromatic copolyimides comprising pyromellitimide units ("I") flanked by either ether-ketone ("K") or ether-sulfone residues ("S") show different binding strengths for pyrene-based tweezer-molecules. Such molecules bind primarily to the diimide unit through complementary π-π-stacking and hydrogen bonding. However, as shown by the magnitudes of 1H NMR complexation shifts and tweezer-polymer binding constants, the triplet "SIS" binds tweezer-molecules more strongly than "KIS" which in turn bind such molecules more strongly than "KIK". Computational models for tweezer-polymer binding, together with single-crystal X-ray analyses of tweezer-complexes with macrocyclic ether-imides, reveal that the variations in binding strength between the different triplet sequences arise from the different conformational preferences of aromatic rings at diarylketone and diarylsulfone linkages. These preferences determine whether or not chain-folding and secondary π−π-stacking occurs between the arms of the tweezermolecule and the 4,4'-biphenylene units which flank the central diimide residue
Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule
In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3- hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline- 3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4- diones, but was unable to inactivate thePQSprecursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation
Recommended from our members
Extracting Three-Dimensional Orientation and Tractography of Myofibers Using Optical Coherence Tomography
Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues
Biotic inactivation of the Pseudomonas aeruginosa quinolone signal molecule
In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3- hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline- 3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4- diones, but was unable to inactivate thePQSprecursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation
Random mutagenesis and precise gene editing technologies: applications in algal crop improvement and functional genomics
© 2017 British Phycological Society. The establishment of a system for gene modification is crucial for the generation of new improved algal strains and elucidation of functional genome organization to enhance our understanding of algal biology. Several gene transfer methods have been developed for stable introduction of transgenes into algae allowing expression of desired foreign proteins. Site-specific gene integration and gene knockdown were achieved through homologous recombination and RNA interference approaches. The nuclease-associated gene editing technologies such as CRISPR-associated RNA-guided endonuclease Cas9 (CRISPR-Cas9) could efficiently generate stable targeted gene editing in algae. Although gene modification technologies have been established for algae, there are still practical difficulties that need to be addressed prior to commercialization such as transgene stability, potential risks and public acceptance. Genetic mitigation and containment strategies should be considered for commercial-scale production of transgenic algae. Abbreviations: ALE, adaptive laboratory evolution; AmiRNA, artificial microRNA; BER, base excision repair; CaMV35S, Cauliflower Mosaic Virus 35S; Cas9, CRISPR-associated protein 9; Cas9n, Cas9 mutant nickase; CRISPR, clustered, regularly interspaced, short palindromic repeats; crRNA, CRISPR RNA; dCAS9, nuclease-deficient Cas9, dead Cas9 or inactive Cas9; DSB, double-stranded break; GM, genetically modified; HDR, homology-directed repair; HR, homologous recombination; miRNA, microRNA; mRNA, messenger RNA; NHEJ, non-homologous end joining; NiR, nitrite reductase; NR, nitrate reductase; PAM, Protospacer-Adjacent Motif; RNAi, RNA interference; sgRNA, single guide RNA; siRNA, small interfering RNA; sRNA, small RNA; SV40, Simian vacuolating virus 40 or Simian virus 40; TALEN, transcription-activator like effector nuclease; tracrRNA, transactivating CRISPR RNA; UTR, Untranslated region; ZFN, zinc-finger nuclease
Agrobacterium-mediated gene delivery and transient expression in the red macroalga Chondrus crispus
Molecular resources and transgenic studies in red algae are lagging behind those for green algae. The Agrobacterium-mediated gene-transfer method routinely used in plant transformation has not been fully utilised in the red algae, which, as an important source of phycocolloids, warrant more studies. In this regard, a stepwise methodology was developed for Agrobacterium-mediated transformation of the carrageenophyte Chondrus crispus using pCAMBIA 1301 and a construct featuring a codon-optimized beta-glucuronidase (GUS) reporter gene driven by the endogenous Chondrus actin promoter. The effects of several factors on transformation efficiency were investigated. An intimate association of Chondrus and bacterial cells was observed using scanning electron microscopy. GUS transient expression within Chondrus cortical and medullary cells with both expression cassettes testified to the amenability of Chondrus to Agrobacterium-mediated transformation. Darker staining, indicative of higher GUS activity, was observed with the Chondrus-specific construct, suggesting its superiority over the pCAMBIA 1301. Presence of acetosyringone, the wounding method and the type of co-cultivation medium significantly affected the transformation outcome and efficiency. The Agrobacterium-mediated transient expression presented here constitutes a first step towards tailoring a transformation strategy for Chondrus, which can serve to facilitate further transgenic studies in this important red alga
Push the Boundary of SAM: A Pseudo-label Correction Framework for Medical Segmentation
Segment anything model (SAM) has emerged as the leading approach for
zero-shot learning in segmentation, offering the advantage of avoiding
pixel-wise annotation. It is particularly appealing in medical image
segmentation where annotation is laborious and expertise-demanding. However,
the direct application of SAM often yields inferior results compared to
conventional fully supervised segmentation networks. While using SAM generated
pseudo label could also benefit the training of fully supervised segmentation,
the performance is limited by the quality of pseudo labels. In this paper, we
propose a novel label corruption to push the boundary of SAM-based
segmentation. Our model utilizes a novel noise detection module to distinguish
between noisy labels from clean labels. This enables us to correct the noisy
labels using an uncertainty-based self-correction module, thereby enriching the
clean training set. Finally, we retrain the network with updated labels to
optimize its weights for future predictions. One key advantage of our model is
its ability to train deep networks using SAM-generated pseudo labels without
relying on a subset of expert-level annotations. We demonstrate the
effectiveness of our proposed model on both X-ray and lung CT datasets,
indicating its ability to improve segmentation accuracy and outperform baseline
methods in label correction
Glioma Through the Looking GLASS: Molecular Evolution of Diffuse Gliomas and the Glioma Longitudinal AnalySiS Consortium
Adult diffuse gliomas are a diverse group of brain neoplasms that inflict a high emotional toll on patients and their families. The Cancer Genome Atlas (TCGA) and similar projects have provided a comprehensive understanding of the somatic alterations and molecular subtypes of glioma at diagnosis. However, gliomas undergo significant cellular and molecular evolution during disease progression. We review the current knowledge on the genomic and epigenetic abnormalities in primary tumors and after disease recurrence, highlight the gaps in the literature, and elaborate on the need for a new multi-institutional effort to bridge these knowledge gaps and how the Glioma Longitudinal AnalySiS Consortium (GLASS) aims to systemically catalog the longitudinal changes in gliomas. The GLASS initiative will provide essential insights into the evolution of glioma toward a lethal phenotype, with the potential to reveal targetable vulnerabilities, and ultimately, improved outcomes for a patient population in need
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
- …
