51 research outputs found

    Measurement of non-monotonous phase changes in temporal speckle pattern interferometry using a correlation method without a temporal carrier

    Get PDF
    Recently, a phase evaluation method was proposed to measure nanometric displacements by means of digital speckle pattern interferometry when the phase change introduced by the deformation is in the range [0,π) rad. This method is based on the evaluation of a correlation coefficient between two speckle interferograms generated by both deformation states of the object. In this paper, we present a novel technique to measure non-monotonous displacements in temporal speckle pattern interferometry using a correlation method without a temporal carrier. In this approach, the sign ambiguity is resolved automatically due to the introduction of a function that determines the correct sign of the displacement between two consecutive speckle interferograms. The rms phase errors introduced by the proposed method are determined using computer-simulated speckle interferograms. An application of the phase retrieval method to process experimental data is also presented.Fil: Tendela, Lucas Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Galizzi, Gustavo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Federico, Roque Alejandro. Instituto Nacional de Tecnología Industrial. Centro de Electrónica e Informática; ArgentinaFil: Kaufmann, Guillermo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin

    Speckle activity images based on the spatial variance of the phase

    Get PDF
    We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying

    Speckle activity images based on the spatial variance of the phase

    Get PDF
    We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying.Facultad de Ingeniería (FI)Centro de Investigaciones Ópticas (CIOp

    Speckle activity images based on the spatial variance of the phase

    Get PDF
    We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying.Facultad de Ingeniería (FI)Centro de Investigaciones Ópticas (CIOp

    Speckle activity images based on the spatial variance of the phase

    Get PDF
    We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying.Facultad de Ingeniería (FI)Centro de Investigaciones Ópticas (CIOp

    Experimental evaluation of a 3D wavelet-based phase recovery method in temporal speckle pattern interferometry

    No full text
    We test the performance of a phase recovery method based on a three-dimensional directional wavelet transform applied to the intensity signal measured by temporal speckle pattern interferometry (TSPI). We present and discuss several sources of uncertainty by analyzing experimental datasets recorded for an in-plane interferometer without introducing a temporal carrier. The dynamic phase data measured with the proposed method are compared with those obtained from the well-known one-dimensional Fourier transform phase recovery technique. In the Fourier method, the filtered Fourier transform for each intensity pixel is evaluated along the temporal direction. In contrast, the three-dimensional directional wavelet transform method uses the information of adjacent pixels and then increases the performance of the recovered dynamic phase results. The advantages and limitations of the three-dimensional directional wavelet transform approach are discussed, and a summary of conclusions from the analysis of TSPI data is also given.Fil: Galizzi, Gustavo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Federico, Roque Alejandro. Instituto Nacional de Tecnología Industrial. Centro de Electrónica e Informática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kaufmann, Guillermo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentin
    corecore