546 research outputs found
Chronic Use of Azithromycin Might Explain the Low Prevalence of COVID-19 in Cystic Fibrosis Patients
Diagnostic Workup of Acute Myeloid Leukemia: What Is Really Necessary? An Italian Survey
Acute myeloid leukemia (AML) is a heterogeneous disease with a wide variety of clinical presentations, morphological features, and immunophenotypes. The diagnostic approaches to AML that are adopted in Italy have been explored using an online Delphi-based process to expand the global discussion on mandatory tests for the correct diagnosis and, consequently, for optimal management of AML in clinical practice. The final results of the panel of Italian hematologists involved in this work highlight the importance of genetic evaluation for classification and risk stratification and firmly establish that karyotyping, fluorescence in situ hybridization in cases with nonevaluable karyotype, and molecular tests must be performed in every case of AML,
regardless of age. Obtaining clinically relevant genetic data at diagnosis is the basis for the success of patient-tailored therapy. The Italian specialists also confirm the role of multidisciplinary diagnostics for AML, now mandatory and expected to become more important in the future context of “precision” medicine
Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano- and nano-structured sp2 carbon allotropes
In this paper, master curves are reported for the crosslinking of a diene rubber with a sulphur based system in the presence of either nano- or nano-structured carbon allotropes, such as carbon nanotubes (CNT), a nanosized graphite with high surface area (HSAG) and carbon black (CB). Poly(1,4-cis-isoprene) from Hevea Brasiliensis was the diene rubber and crosslinking was performed in temperatures ranging from 151 to 180°C, with carbon allotropes below and above their percolation threshold. Such carbon allotropes were characterized by different aspect ratio, surface area and pH. However, in the crosslinking reaction, they revealed common behaviour. In fact, the specific interfacial area could be used to correlate crosslinking parameters, such as induction time (ts1) and activation energy (Ea) calculated by applying the autocatalytic model. Monotonous decrease of ts1 and increase of Ea were observed, with points lying on master curves, regardless of the nature of the carbon allotropes. Remarkable differences were however observed in the structure of the crosslinking network: when the carbon allotrope was above the percolation threshold much larger crosslinking density was obtained in the presence of CNT whereas composites based on HSAG became soluble in hydrocarbon solvent, after the reaction with a thiol. Proposed explanation of these results is based on the reactivity of carbon allotropes with sulphur and sulphur based compounds, demonstrated through the reaction of 1-dodecanethiol and sulphur with CNT and HSAG and with a model substrate such as anthracene
Precision medicine in lymphoma by innovative instrumental platforms
Since the last years, many efforts have been addressed to the growing field of precision medicine in order to offer individual treatments to every patient on the basis of his/her genetic background. Formerly adopted to achieve new disease classifications as it is still done, innovative platforms, such as microarrays, genome-wide association studies (GWAS) and next generation sequencing (NGS), have made the progress in pharmacogenetics faster and cheaper than previously expected. Several studies in lymphoma patients have demonstrated that these platforms can be used to identify biomarkers predictive of drug efficacy and tolerability, discovering new possible druggable proteins. Indeed, GWAS and NGS allow the investigation of the human genome, finding interesting associations with putative or unexpected targets, which in turns may represent new therapeutic possibilities. Importantly, some objective difficulties have initially hampered the translation of findings in clinical routines, such as the poor quantity/quality of genetic material or the paucity of targets that could be investigated at the same time. At present, some of these technical issues have been partially solved. Furthermore, these analyses are growing in parallel with the development of bioinformatics and its capabilities to manage and analyze big data. Because of pharmacogenetic markers may become important during drug development, regulatory authorities (i.e., EMA, FDA) are preparing ad hoc guidelines and recommendations to include the evaluation of genetic markers in clinical trials. Concerns and difficulties for the adoption of genetic testing in routine are still present, as well as affordability, reliability and the poor confidence of some patients for these tests. However, genetic testing based on predictive markers may offers many advantages to caregivers and patients and their introduction in clinical routine is justified
Monitoring Chronic Myeloid Leukemia: How Molecular Tools May Drive Therapeutic Approaches
More than 15 years ago, imatinib entered into the clinical practice as a "magic bullet"; from that point on, the prognosis of patients affected by chronic myeloid leukemia (CML) became comparable to that of aged-matched healthy subjects. The aims of treatment with tyrosine kinase inhibitors (TKIs) are for complete hematological response after 3 months of treatment, complete cytogenetic response after 6 months, and a reduction of the molecular disease of at least 3 logs after 12 months. Patients who do not reach their goal can switch to another TKI. Thus, the molecular monitoring of response is the main consideration of management of CML patients. Moreover, cases in deep and persistent molecular response can tempt the physician to interrupt treatment, and this "dream" is possible due to the quantitative PCR. After great international effort, today the BCR-ABL1 expression obtained in each laboratory is standardized and expressed as "international scale." This aim has been reached after the establishment of the EUTOS program (in Europe) and the LabNet network (in Italy), the platforms where biologists meet clinicians. In the field of quantitative PCR, the digital PCR is now a new and promising, sensitive and accurate tool. Some authors reported that digital PCR is able to better classify patients in precise "molecular classes," which could lead to a better identification of those cases that will benefit from the interruption of therapy. In addition, digital PCR can be used to identify a point mutation in the ABL1 domain, mutations that are often responsible for the TKI resistance. In the field of resistance, a prominent role is played by the NGS that enables identification of any mutation in ABL1 domain, even at sub-clonal levels. This manuscript reviews how the molecular tools can lead the management of CML patients, focusing on the more recent technical advances
PRDI-BF1 and PRDI-BF1P isoform expressions correlate with disease status in multiple myeloma patients
Human positive regulatory domain I binding factor 1 (PRDI-BF1 or BLIMP-1) is a transcription factor that acts as a master regulator and has crucial roles in the control of differentiation and in maintaining survival of plasma cells (PC). The PRDM1 gene, which codifies for PRDI-BF1, contains an alternative promoter capable of generating a PRDI-BF1 deleted protein (called PRDI-BF1β), which lacks 101 amino acids comprising most of the regulatory domain. PRDI-BF1β has been detected in relevant quantities especially in multiple myeloma cell lines (U266 and NCI- H929). The first aim of the study was to compare, using real time polymerase chain reaction (RT-PCR), the levels of PRDI-BF1 and PRDI-BF1β in myeloma patients and in normal human bone marrow. The second step was the examination of the expression of PRDI-BF1 and PRDI-BF1β isoform depending on disease status and treatment response. We demonstrate the correlation of PRDI-BF1 and the shorter PRDI-BF1β isoform protein levels with the clinical evolution and the management of myeloma patients
Bortezomib with Thalidomide plus Dexamethasone Compared with Thalidomide plus Doxorubicin and Dexamethasone as Induction Therapy in Previously Untreated Multiple Myeloma Patients
We conducted a retrospective study to compare thalidomide, bortezomib and dexamethasone (VTD) with thalidomide plus doxorubicin and dexamethasone (TAD). Until now, first-line treatment with these combinations has not been reported in any comparative study. The principal objective of this study was to determine whether VTD would improve the complete response (CR) and CR plus very good partial response rates compared with TAD. Second, using additional methods, such as flow cytometric assays and polymerase chain reaction technology, we evaluated the molecular residual disease in the subgroup of patients that obtained CR. Our study shows that VTD is a superior induction regimen compared with TAD, with a higher response rate after induction, translating into greater CR plus very good partial response
Literature review and expert opinion on the treatment of high-risk acute myeloid leukemia in patients who are eligible for intensive chemotherapy
In patients with acute myeloid leukemia (AML), the assessment of disease risk
plays a central role in the era of personalized medicine. indeed, integrating
baseline clinical and biological features on a case-by-case basis is not only
essential to select which treatment would likely result in a higher probability of
achieving complete remission, but also to dynamically customize any
subsequent therapeutic intervention. for young high-risk patients with low
comorbidities burden and in good general conditions (also called “fit” patients),
intensive chemotherapy followed by allogeneic stem cell transplantation still
represents the backbone of any therapeutic program. however, with the
approval of novel promising agents in both the induction/consolidation and
the maintenance setting, the algorithms for the management of AML patients
considered eligible for intensive chemotherapy are in constant evolution. In this
view, we selected burning issues regarding the identification and management of
high-risk AML, aiming to provide practical advice to facilitate their daily clinical
management in patients considered eligible for intensive chemotherapy
Prethymic cytoplasmic CD3 negative acute lymphoblastic leukemia or acute undifferentiated leukemia: a case report
Acute undiffentiated leukemia (AUL) is an acute leukemia with no more than one membrane marker of any given lineage. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The expression of CD34, HLA-DR, and CD38 has been shown in pro-T-ALL, although in this case, blasts should also express CD7 and cyCD3. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell. We report a case of acute leukemia CD34+/-HLADR+CD7+CD38+cyCD3- in which a diagnosis of AUL was considered. However the blasts were also positive for CD99 and TCR delta gene rearrangement which was found on molecular studies. Therefore a differential diagnosis between AUL and an early cyCD3 negative T-ALL was debated
- …