14 research outputs found

    The symmetric Radon-Nikodým property for tensor norms

    Get PDF
    We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    Natural symmetric tensor norms

    Get PDF
    In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    Five Basic Lemmas for Symmetric Tensor Products of Normed Spaces

    Get PDF
    We give the symmetric version of five lemmas which are essential for the theory of tensor products (and norms). These are: the approximation, extension, embedding, density and local technique lemma. Some applications of these tools to the metric theory of symmetric tensor products and to the theory of polynomials ideals are given.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    Asymptotic estimates for the largest volume ratio of a convex body

    Get PDF
    The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentin

    The Minimal Volume of Simplices Containing a Convex Body

    Get PDF
    Let K⊂ Rn be a convex body with barycenter at the origin. We show there is a simplex S⊂ K having also barycenter at the origin such that (vol(S)vol(K))1/n≥cn, where c> 0 is an absolute constant. This is achieved using stochastic geometric techniques. Precisely, if K is in isotropic position, we present a method to find centered simplices verifying the above bound that works with extremely high probability. By duality, given a convex body K⊂ Rn we show there is a simplex S enclosing Kwith the same barycenter such that(vol(S)vol(K))1/n≤dn,for some absolute constant d> 0. Up to the constant, the estimate cannot be lessened.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Pinasco, Damian. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    The ideal of p-compact operators: a tensor product approach

    Get PDF
    We study the space of p-compact operators, Kp, using the theory of tensor norms and operator ideals. We prove that Kp is associated to /dp, the left injective associate of the Chevet-Saphar tensor norm dp (which is equal to g' p' ). This allows us to relate the theory of p-summing operators to that of p-compact operators. Using the results known for the former class and appropriate hypotheses on E and F we prove that K p(E; F) is equal to Kq(E; F) for a wide range of values of p and q, and show that our results are sharp. We also exhibit several structural properties of Kp. For instance, we show that Kp is regular, surjective, and totally accessible, and we characterize its maximal hull Kmax p as the dual ideal of p-summing operators, Πdual p . Furthermore, we prove that Kp coincides isometrically with QNdual p , the dual to the ideal of the quasi p-nuclear operators.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Turco, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    The sup‐norm vs. the norm of the coefficients: equivalence constants for homogeneous polynomials

    Get PDF
    Let Amp,r(n) be the best constant that fulfills the following inequality: for every m-homogeneous polynomial P(z)=∑|α|=maαzα in n complex variables, (∑|α|=m|aα|r)1/r≤Amp,r(n)supz∈Bℓnp∣∣P(z)∣∣. For every degree m, and a wide range of values of p,r∈[1,∞] (including any r in the case p∈[1,2], and any r and p for the 2-homogeneous case), we give the correct asymptotic behavior of these constants as n (the number of variables) tends to infinity. Remarkably, in many cases, extremal polynomials for these inequalities are not (as traditionally expected) found using classical random unimodular polynomials, and special combinatorial configurations of monomials are needed. Namely, we show that Steiner polynomials (i.e., m-homogeneous polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems), do the work for certain range of values of p,r. As a byproduct, we present some applications of these estimates to the interpolation of tensor products of Banach spaces, to the study of (mixed) unconditionality in spaces of polynomials and to the multivariable von Neumann's inequality.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentin

    Characterization of nonsignaling correlations from mutual information

    Get PDF
    We present a characterization of the set of nonsignaling correlations in terms of a two-dimensional representation that involves the maximal value of a Bell functional and the mutual information between the parties. In particular, we apply this representation to the bipartite Bell scenario with two measurements and two outcomes. In terms of these physically meaningful quantities and through numerical optimization methods and some analytical results, we investigate the frontier between the different subsets of the nonsignaling correlations, focusing on the quantum and postquantum ones. Our analysis exhibits that there is a trade-off between the amount of classical correlations existing between the parties and the magnitude of the violation of a given Bell inequality. Notably, the Tsirelson bound appears as a singular point of this trade-off without resorting to quantum mechanics.Fil: Perito, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentin

    Impossibility of memory in hidden-signaling models for quantum correlations

    Get PDF
    We consider a toy model for nonlocal quantum correlations in which nature resorts to some form of hidden signaling (i.e., signaling between boxes but not available to the users) to generate correlations. We show that if such a model also had memory, the parties would be able to exploit the hidden signaling and use it to send a message, achieving faster-than-light communication. Given that memory is a resource easily available for any physical system, our results add evidence against hidden signaling as the mechanism behind nature's nonlocal behavior.Fil: Perito, Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Bellomo, Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Bendersky, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin
    corecore