475 research outputs found

    Production of multi-strangeness hypernuclei and the YN-interaction

    Get PDF
    We investigate for the first time the influence of hyperon-nucleon (YN) interaction models on the strangeness dynamics of antiproton- and Ξ\Xi-nucleus interactions. Of particular interest is the formation of bound multi-strangeness hypermatter in reactions relevant for \panda. The main features of two well-established microscopic approaches for YN-scattering are first discussed and their results are then analysed such that they can be applied in transport-theoretical simulations. The transport calculations for reactions induced by antiproton beams on a primary target including also the secondary cascade beams on a secondary target show a strong sensitivity on the underlying YN-interaction. In particular, we predict the formation of Ξ\Xi-hypernuclei with an observable sensitivity on the underlying Ξ\XiN-interaction. We conclude the importance of our studies for the forthcoming research plans at FAIR.Comment: 13 pages, 5 figures. Accepted for publication in Physics Letters

    Stopping and Isospin Equilibration in Heavy Ion Collisions

    Get PDF
    We investigate the density behaviour of the symmetry energy with respect to isospin equilibration in the combined systems Ru(Zr)+Zr(Ru)Ru(Zr)+Zr(Ru) at relativistic energies of 0.4 and 1.528AGeV1.528 AGeV. The study is performed within a relativistic framework and the contribution of the iso-vector, scalar δ\delta field to the symmetry energy and the isospin dynamics is particularly explored. We find that the isospin mixing depends on the symmetry energy and a stiff behaviour leads to more transparency. The results are also nicely sensitive to the "fine structure" of the symmetry energy, i.e. to the covariant properties of the isovector meson fields. The isospin tracing appears much less dependent on the in-medium neutron-proton cross-sections (σnp\sigma_{np}) and this makes such observable very peculiar for the study of the isovector part of the nuclear equation of state. Within such a framework, comparisons with experiments support the introduction of the δ\delta meson in the description of the iso-vector equation of state.Comment: 11 pages, 5 figures. Accepted for publication in Phys.Lett.

    Fragment Formation in Central Heavy Ion Collisions at Relativistic Energies

    Full text link
    We perform a systematic study of the fragmentation path of excited nuclear matter in central heavy ion collisions at the intermediate energy of 0.4AGeV0.4 AGeV. The theoretical calculations are based on a Relativistic Boltzmann-Uehling-Uhlenbeck (RBUURBUU) transport equation including stochastic effects. A Relativistic Mean Field (RMFRMF) approach is used, based on a non-linear Lagrangian, with coupling constants tuned to reproduce the high density results of calculations with correlations. At variance with the case at Fermi energies, a new fast clusterization mechanism is revealed in the early compression stage of the reaction dynamics. Fragments appear directly produced from phase-space fluctuations due to two-body correlations. In-medium effects of the elastic nucleon-nucleon cross sections on the fragmentation dynamics are particularly discussed. The subsequent evolution of the primordial clusters is treated using a simple phenomenological phase space coalescence algorithm. The reliability of the approach, formation and recognition, is investigated in detail by comparing fragment momentum space distributions {\it and simultaneously} their yields with recent experimental data of the FOPIFOPI collaboration by varying the system size of the colliding system, i.e. its compressional energy (pressure, radial flow). We find an excellent agreement between theory and experiment in almost all the cases and, on the other hand, some limitations of the simple coalescence model. Furthermore, the temporal evolution of the fragment structure is explored with a clear evidence of an earlier formation of the heavier clusters, that will appear as interesting relicsrelics of the high density phase of the nuclear Equation of State (EoSEoS).Comment: 21 pages, 8 figures, Latex Elsart Style, minor corrections in p.7, two refs. added, Nucl.Phys.A, accepte

    Neutron stars with isovector scalar correlations

    Full text link
    Neutron stars with the isovector scalar δ\delta-field are studied in the framework of the relativistic mean field (RMFRMF) approach in a pure nucleon plus lepton scheme. The δ\delta-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOSEOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMFRMF approach a density dependence of the coupling constants is required.Comment: 11 pages, 5 figures, revtex4 styl

    Thermodynamical description of heavy ion collisions

    Get PDF
    We analyze the thermodynamical state of nuclear matter in transport descriptions of heavy ion reactions. We determine thermodynamical variables from an analysis of local momentum space distributions and compare to blast model parameters from an analysis of fragment energy spectra. These descriptions are applied to spectator and fireball matter in semi-central and central Au+Au collisions at SIS-energies, respectively.Comment: 4 pages, 2 postscript-figures, to be published in the proceedings of Bologna2000: Structure of the Nucleus at the Dawn of the Century, Bologna, Italy, 29 May - 3 Jun 200
    corecore