3,502 research outputs found
Three-Dimensional Analysis of Wakefields Generated by Flat Electron Beams in Planar Dielectric-Loaded Structures
An electron bunch passing through dielectric-lined waveguide generates
erenkov radiation that can result in high-peak axial electric field
suitable for acceleration of a subsequent bunch. Axial field beyond
Gigavolt-per-meter are attainable in structures with sub-mm sizes depending on
the achievement of suitable electron bunch parameters. A promising
configuration consists of using planar dielectric structure driven by flat
electron bunches. In this paper we present a three-dimensional analysis of
wakefields produced by flat beams in planar dielectric structures thereby
extending the work of Reference [A. Tremaine, J. Rosenzweig, and P. Schoessow,
Phys. Rev. E 56, No. 6, 7204 (1997)] on the topic. We especially provide
closed-form expressions for the normal frequencies and field amplitudes of the
excited modes and benchmark these analytical results with finite-difference
time-domain particle-in-cell numerical simulations. Finally, we implement a
semi-analytical algorithm into a popular particle tracking program thereby
enabling start-to-end high-fidelity modeling of linear accelerators based on
dielectric-lined planar waveguides.Comment: 12 pages, 2 tables, 10 figure
Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique
A common issue encountered in photoemission electron sources used in electron
accelerators is the transverse inhomogeneity of the laser distribution
resulting from the laser-amplification process and often use of frequency up
conversion in nonlinear crystals. A inhomogeneous laser distribution on the
photocathode produces charged beams with lower beam quality. In this paper, we
explore the possible use of microlens arrays (fly-eye light condensers) to
dramatically improve the transverse uniformity of the drive laser pulse on UV
photocathodes. We also demonstrate the use of such microlens arrays to generate
transversely-modulated electron beams and present a possible application to
diagnose the properties of a magnetized beam.Comment: arXiv admin note: text overlap with arXiv:1609.0166
'Rapid fire' spectroscopy of Kepler solar-like oscillators
The NASA Kepler mission has been continuously monitoring the same field of
the sky since the successful launch in March 2009, providing high-quality
stellar lightcurves that are excellent data for asteroseismology, far superior
to any other observations available at the present. In order to make a
meaningful analysis and interpretation of the asteroseismic data, accurate
fundamental parameters for the observed stars are needed. The currently
available parameters are quite uncertain as illustrated by e.g. Thygesen et al.
(A&A 543, A160, 2012), who found deviations as extreme as 2.0 dex in [Fe/H] and
log g, compared to catalogue values. Thus, additional follow-up observations
for these targets are needed in order to put firm limits on the parameter space
investigated by the asteroseismic modellers. Here, we propose a metod for
deriving accurate metallicities of main sequence and subgiant solar-like
oscillators from medium resolution spectra with a moderate S/N. The method
takes advantage of the additional constraints on the fundamental parameters,
available from asteroseismology and multi-color photometry. The approach
enables us to reduce the analysis overhead significantly when doing spectral
synthesis, which in turn will increases the efficiency of follow-up
observations.Comment: 3 pages, 2 figures. Proceedings from Asteroseismology of Stellar
Populations in the Milky Way 2013 to appear in 'Astrophysics and Space
Science Proceedings
Submillimeter diffusion tensor imaging and late gadolinium enhancement cardiovascular magnetic resonance of chronic myocardial infarction.
BackgroundKnowledge of the three-dimensional (3D) infarct structure and fiber orientation remodeling is essential for complete understanding of infarct pathophysiology and post-infarction electromechanical functioning of the heart. Accurate imaging of infarct microstructure necessitates imaging techniques that produce high image spatial resolution and high signal-to-noise ratio (SNR). The aim of this study is to provide detailed reconstruction of 3D chronic infarcts in order to characterize the infarct microstructural remodeling in porcine and human hearts.MethodsWe employed a customized diffusion tensor imaging (DTI) technique in conjunction with late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) on a 3T clinical scanner to image, at submillimeter resolution, myofiber orientation and scar structure in eight chronically infarcted porcine hearts ex vivo. Systematic quantification of local microstructure was performed and the chronic infarct remodeling was characterized at different levels of wall thickness and scar transmurality. Further, a human heart with myocardial infarction was imaged using the same DTI sequence.ResultsThe SNR of non-diffusion-weighted images was >100 in the infarcted and control hearts. Mean diffusivity and fractional anisotropy (FA) demonstrated a 43% increase, and a 35% decrease respectively, inside the scar tissue. Despite this, the majority of the scar showed anisotropic structure with FA higher than an isotropic liquid. The analysis revealed that the primary eigenvector orientation at the infarcted wall on average followed the pattern of original fiber orientation (imbrication angle mean: 1.96 ± 11.03° vs. 0.84 ± 1.47°, p = 0.61, and inclination angle range: 111.0 ± 10.7° vs. 112.5 ± 6.8°, p = 0.61, infarcted/control wall), but at a higher transmural gradient of inclination angle that increased with scar transmurality (r = 0.36) and the inverse of wall thickness (r = 0.59). Further, the infarcted wall exhibited a significant increase in both the proportion of left-handed epicardial eigenvectors, and in the angle incoherency. The infarcted human heart demonstrated preservation of primary eigenvector orientation at the thinned region of infarct, consistent with the findings in the porcine hearts.ConclusionsThe application of high-resolution DTI and LGE-CMR revealed the detailed organization of anisotropic infarct structure at a chronic state. This information enhances our understanding of chronic post-infarction remodeling in large animal and human hearts
Self-assembly of Nanometer-scale Magnetic Dots with Narrow Size Distributions on an Insulating Substrate
The self-assembly of iron dots on the insulating surface of NaCl(001) is
investigated experimentally and theoretically. Under proper growth conditions,
nanometer-scale magnetic iron dots with remarkably narrow size distributions
can be achieved in the absence of a wetting layer Furthermore, both the
vertical and lateral sizes of the dots can be tuned with the iron dosage
without introducing apparent size broadening, even though the clustering is
clearly in the strong coarsening regime. These observations are interpreted
using a phenomenological mean-field theory, in which a coverage-dependent
optimal dot size is selected by strain-mediated dot-dot interactions.Comment: 5 pages, 4 figure
Strain driven anisotropic magnetoresistance in antiferromagnetic LaSrMnO
We investigate the effects of strain on antiferromagntic (AFM) single crystal
thin films of LaSrMnO (x = 0.6). Nominally unstrained
samples have strong magnetoresistance with anisotropic magnetoresistances (AMR)
of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR
values of up to 63%. Tensile strain presents the only case of a metal-insulator
transition and demonstrates a previously unreported AMR behavior. In all three
cases, we find evidence of magnetic ordering and no indication of a global
ferromagnetic phase transition. These behaviors are attributed to epitaxy
induced changes in orbital occupation driving different magnetic ordering
types. Our findings suggest that different AFM ordering types have a profound
impact on the AMR magnitude and character.Comment: http://dx.doi.org/10.1063/1.489242
Whither Capitalism? Financial externalities and crisis
As with global warming, so with financial crises – externalities have a lot to answer for. We
look at three of them. First the financial accelerator due to ‘fire sales’ of collateral assets -- a
form of pecuniary externality that leads to liquidity being undervalued. Second the ‘risk-
shifting’ behaviour of highly-levered financial institutions who keep the upside of risky
investment while passing the downside to others thanks to limited liability. Finally, the
network externality where the structure of the financial industry helps propagate shocks
around the system unless this is checked by some form of circuit breaker, or ‘ring-fence’.
The contrast between crisis-induced Great Recession and its aftermath of slow growth in the
West and the rapid - and (so far) sustained - growth in the East suggests that successful
economic progress may depend on how well these externalities are managed
Space-borne global astrometric surveys: the hunt for extra-solar planets
The proposed global astrometry mission {\it GAIA}, recently recommended
within the context of ESA's Horizon 2000 Plus long-term scientific program,
appears capable of surveying the solar neighborhood within 200 pc for
the astrometric signatures of planets around stars down to the magnitude limit
of =17 mag, which includes late M dwarfs at 100 pc. Realistic end-to-end
simulations of the GAIA global astrometric measurements have yielded first
quantitative estimates of the sensitivity to planetary perturbations and of the
ability to measure their orbital parameters. Single Jupiter-mass planets around
normal solar-type stars appear detectable up to 150 pc (12 mag) with
probabilities 50 per cent for orbital periods between 2.5 and
8 years, and their orbital parameters measured with better than 30 per
cent accuracy to about 100 pc. Jupiter-like objects (same mass and period as
our giant planet) are found with similar probabilities up to 100 pc.These first
experiments indicate that the {\it GAIA} results would constitute an important
addition to those which will come from the other ongoing and planned
planet-search programs. These data combined would provide a formidable testing
ground on which to confront theories of planetary formation and evolution.Comment: 13 pages, 10 figures, uses mn.sty, accepted by MNRA
- …