3,379 research outputs found

    Thrifty swimming with shear-thinning

    Get PDF
    Microscale propulsion is integral to numerous biomedical systems, for example biofilm formation and human reproduction, where the surrounding fluids comprise suspensions of polymers. These polymers endow the fluid with non-Newtonian rheological properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of non-Newtonian fluids presents numerous modelling challenges, strongly motivating experimental study. Here, we demonstrate that failing to account for "out-of-plane" effects when analysing experimental data of undulatory swimming through a shear-thinning fluid results in a significant overestimate of fluid viscosity around the model swimmer C. elegans. This miscalculation of viscosity corresponds with an overestimate of the power the swimmer expends, a key biophysical quantity important for understanding the internal mechanics of the swimmer. As experimental flow tracking techniques improve, accurate experimental estimates of power consumption using this technique will arise in similar undulatory systems, such as the planar beating of human sperm through cervical mucus, will be required to probe the interaction between internal power generation, fluid rheology, and the resulting waveform

    Locomotion At Low Reynolds Number: Dynamics In Newtonian And Non-Newtonian Systems With Biomedical Applications

    Get PDF
    Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are critical to ubiquitous biological phenomena such as disease and infection, ecosystem dynamics, and mammalian fertilization. While there has been much scientific and practical interest in studying these swimmers in Newtonian (water-like) fluids, there are fewer systematic experimental studies on swimming through non-Newtonian (non-water-like) fluids with biologically-relevant mechanical properties. These organisms commonly swim through viscoelastic, structured, or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the small length scales of these organisms dictate that their motion is dominated by viscous forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image processing techniques, we examine the interaction of low Reynolds number swimmers and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning fluids. We then apply our understanding of locomotion to the study of the genetic disease Spinal Muscular Atrophy

    Undulatory swimming in shear-thinning fluids: Experiments with C. elegans

    Get PDF
    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation and an increase in fluid velocity near the nematode's tail compared to Newtonian fluids of similar effective viscosity. These findings are compared to recent theoretical and numerical results

    Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality.

    Get PDF
    The worldwide spread of a novel influenza A (H1N1) virus in 2009 showed that influenza remains a significant health threat, even for individuals in the prime of life. This paper focuses on the unusually high young adult mortality observed during the Spanish flu pandemic of 1918. Using historical records from Canada and the U.S., we report a peak of mortality at the exact age of 28 during the pandemic and argue that this increased mortality resulted from an early life exposure to influenza during the previous Russian flu pandemic of 1889-90. We posit that in specific instances, development of immunological memory to an influenza virus strain in early life may lead to a dysregulated immune response to antigenically novel strains encountered in later life, thereby increasing the risk of death. Exposure during critical periods of development could also create holes in the T cell repertoire and impair fetal maturation in general, thereby increasing mortality from infectious diseases later in life. Knowledge of the age-pattern of susceptibility to mortality from influenza could improve crisis management during future influenza pandemics

    A 100-element HBT grid amplifier

    Get PDF
    A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBTs and free space. Two independent measurements, one with focusing lenses and the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return losses were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multimode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30° were amplified with less than a 3-dB drop in gain

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid

    Daily Step Count Predicts Acute Exacerbations in a US Cohort with COPD

    Get PDF
    Background: COPD is characterized by variability in exercise capacity and physical activity (PA), and acute exacerbations (AEs). Little is known about the relationship between daily step count, a direct measure of PA, and the risk of AEs, including hospitalizations. Methods: In an observational cohort study of 169 persons with COPD, we directly assessed PA with the StepWatch Activity Monitor, an ankle-worn accelerometer that measures daily step count. We also assessed exercise capacity with the 6-minute walk test (6MWT) and patient-reported PA with the St. George's Respiratory Questionnaire Activity Score (SGRQ-AS). AEs and COPD-related hospitalizations were assessed and validated prospectively over a median of 16 months. Results: Mean daily step count was 5804±3141 steps. Over 209 person-years of observation, there were 263 AEs (incidence rate 1.3±1.6 per person-year) and 116 COPD-related hospitalizations (incidence rate 0.56±1.09 per person-year). Adjusting for FEV1 % predicted and prednisone use for AE in previous year, for each 1000 fewer steps per day walked at baseline, there was an increased rate of AEs (rate ratio 1.07; 95%CI = 1.003–1.15) and COPD-related hospitalizations (rate ratio 1.24; 95%CI = 1.08–1.42). There was a significant linear trend of decreasing daily step count by quartiles and increasing rate ratios for AEs (P = 0.008) and COPD-related hospitalizations (P = 0.003). Each 30-meter decrease in 6MWT distance was associated with an increased rate ratio of 1.07 (95%CI = 1.01–1.14) for AEs and 1.18 (95%CI = 1.07–1.30) for COPD-related hospitalizations. Worsening of SGRQ-AS by 4 points was associated with an increased rate ratio of 1.05 (95%CI = 1.01–1.09) for AEs and 1.10 (95%CI = 1.02–1.17) for COPD-related hospitalizations. Conclusions: Lower daily step count, lower 6MWT distance, and worse SGRQ-AS predict future AEs and COPD–related hospitalizations, independent of pulmonary function and previous AE history. These results support the importance of assessing PA in patients with COPD, and provide the rationale to promote PA as part of exacerbation-prevention strategies

    Plasticity in the antipredator behavior of the orange-footed sea cucumber under shifting hydrodynamic forces

    Get PDF
    Marine invertebrates that move too slowly to evade unfavorable environmental change may instead exhibit phenotypic plasticity, allowing them to adjust to varying conditions. The orange-footed sea cucumber Cucumaria frondosa is a slow-moving suspension feeder that is preyed on by the purple sunstar Solaster endeca. The sea cucumber’s antipredator behavior involves changing shape and detaching from the substratum, which might increase its probability of being displaced by water motion into an unsuitable environment. We hypothesized that sea cucumbers’ antipredator responses would be diminished under stronger hydrodynamic forces, and that behavioral strategies would be flexible so that individuals could adjust to frequent changes in water flows. In a natural orange-footed sea cucumber habitat, individuals lived along a pronounced hydrodynamic gradient, allowing us to measure antipredator behavior under different water flow strengths. We placed purple sunstars in physical contact with sea cucumbers living at various points along the gradient to elicit antipredator responses. We then repeated this procedure in a laboratory mesocosm that generated weak and strong hydrodynamic forces similar to those observed at the field site. Subjects in the mesocosm experiment were tested in both wave conditions to determine if their antipredator behavior would change in response to sudden environmental change, as would be experienced under deteriorating sea conditions. Antipredator responses did not covary with hydrodynamic forces in the field. However, antipredator responses in the mesocosm experiment increased when individuals were transplanted from strong to weak forces and decreased when transplanted from weak to strong forces. Overall, our results indicate environmentally induced plasticity in the antipredator behavior of the orange-footed sea cucumber

    Validating a new methodology for optical probe design and image registration in fNIRS studies

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing
    • …
    corecore