50 research outputs found

    Shape Generation using Spatially Partitioned Point Clouds

    Full text link
    We propose a method to generate 3D shapes using point clouds. Given a point-cloud representation of a 3D shape, our method builds a kd-tree to spatially partition the points. This orders them consistently across all shapes, resulting in reasonably good correspondences across all shapes. We then use PCA analysis to derive a linear shape basis across the spatially partitioned points, and optimize the point ordering by iteratively minimizing the PCA reconstruction error. Even with the spatial sorting, the point clouds are inherently noisy and the resulting distribution over the shape coefficients can be highly multi-modal. We propose to use the expressive power of neural networks to learn a distribution over the shape coefficients in a generative-adversarial framework. Compared to 3D shape generative models trained on voxel-representations, our point-based method is considerably more light-weight and scalable, with little loss of quality. It also outperforms simpler linear factor models such as Probabilistic PCA, both qualitatively and quantitatively, on a number of categories from the ShapeNet dataset. Furthermore, our method can easily incorporate other point attributes such as normal and color information, an additional advantage over voxel-based representations.Comment: To appear at BMVC 201

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Accidental Turntables: Learning 3D Pose by Watching Objects Turn

    Full text link
    We propose a technique for learning single-view 3D object pose estimation models by utilizing a new source of data -- in-the-wild videos where objects turn. Such videos are prevalent in practice (e.g., cars in roundabouts, airplanes near runways) and easy to collect. We show that classical structure-from-motion algorithms, coupled with the recent advances in instance detection and feature matching, provides surprisingly accurate relative 3D pose estimation on such videos. We propose a multi-stage training scheme that first learns a canonical pose across a collection of videos and then supervises a model for single-view pose estimation. The proposed technique achieves competitive performance with respect to existing state-of-the-art on standard benchmarks for 3D pose estimation, without requiring any pose labels during training. We also contribute an Accidental Turntables Dataset, containing a challenging set of 41,212 images of cars in cluttered backgrounds, motion blur and illumination changes that serves as a benchmark for 3D pose estimation.Comment: Project website: https://people.cs.umass.edu/~zezhoucheng/acci-turn

    Diffusion Handles: Enabling 3D Edits for Diffusion Models by Lifting Activations to 3D

    Full text link
    Diffusion Handles is a novel approach to enabling 3D object edits on diffusion images. We accomplish these edits using existing pre-trained diffusion models, and 2D image depth estimation, without any fine-tuning or 3D object retrieval. The edited results remain plausible, photo-real, and preserve object identity. Diffusion Handles address a critically missing facet of generative image based creative design, and significantly advance the state-of-the-art in generative image editing. Our key insight is to lift diffusion activations for an object to 3D using a proxy depth, 3D-transform the depth and associated activations, and project them back to image space. The diffusion process applied to the manipulated activations with identity control, produces plausible edited images showing complex 3D occlusion and lighting effects. We evaluate Diffusion Handles: quantitatively, on a large synthetic data benchmark; and qualitatively by a user study, showing our output to be more plausible, and better than prior art at both, 3D editing and identity control. Project Webpage: https://diffusionhandles.github.io/Comment: Project Webpage: https://diffusionhandles.github.io
    corecore