8 research outputs found
19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship
A family
of three discrete organoantimony(III)-functionalized heteropolyanions[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and
[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate(III)
precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel
polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and
Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number
of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful
control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing
the largest organoantimony-containing polyanion. All three compounds
were fully characterized in the solid state via single-crystal X-ray
diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric
analysis, and their aqueous solution stability was validated by ultraviolet–visible
light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective
inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity
relationship for these polyanions
19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship
A family
of three discrete organoantimony(III)-functionalized heteropolyanions[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and
[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate(III)
precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel
polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and
Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number
of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful
control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing
the largest organoantimony-containing polyanion. All three compounds
were fully characterized in the solid state via single-crystal X-ray
diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric
analysis, and their aqueous solution stability was validated by ultraviolet–visible
light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective
inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity
relationship for these polyanions
19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship
A family
of three discrete organoantimony(III)-functionalized heteropolyanions[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and
[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate(III)
precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel
polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and
Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}{WO<sub>2</sub>(H<sub>2</sub>O)}{WO(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number
of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful
control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing
the largest organoantimony-containing polyanion. All three compounds
were fully characterized in the solid state via single-crystal X-ray
diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric
analysis, and their aqueous solution stability was validated by ultraviolet–visible
light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective
inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity
relationship for these polyanions
Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution
Two tetra-antimony(III)-bridged,
sandwich-type 18-tungsto-2-arsenates(V), [(LSbIII)4(A-α-AsVW9O34)2]10– (L = Ph (1), OH (2)), were prepared and fully characterized in
the solid state and in solution. Both polyanions are stable in aqueous physiological medium for
at least 24 h (at concentrations ≥2.5 × 10–6 M). Despite the presence of an isostructural tetra-antimony(III)
motif in 1 and 2, distinctly different antibacterial
activity was observed for both polyanions. The minimum inhibitory
concentrations (MIC) of 1 (7.8–62.5 μg/mL)
is lower than for any other organoantimony(III)-containing polyoxometalate
reported to date
Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution
Two tetra-antimony(III)-bridged,
sandwich-type 18-tungsto-2-arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in
the solid state and in solution. Both polyanions are stable in aqueous physiological medium for
at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony(III)
motif in <b>1</b> and <b>2</b>, distinctly different antibacterial
activity was observed for both polyanions. The minimum inhibitory
concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL)
is lower than for any other organoantimony(III)-containing polyoxometalate
reported to date
Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution
Two tetra-antimony(III)-bridged,
sandwich-type 18-tungsto-2-arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in
the solid state and in solution. Both polyanions are stable in aqueous physiological medium for
at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony(III)
motif in <b>1</b> and <b>2</b>, distinctly different antibacterial
activity was observed for both polyanions. The minimum inhibitory
concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL)
is lower than for any other organoantimony(III)-containing polyoxometalate
reported to date
Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates
Three discrete organoantimony(III)-containing heteropolytungstates
[(PhSbIII)4(A-α-GeIVW9O34)2]12– (1), [(PhSbIII)4(A-α-PVW9O34)2]10– (2), and [{2-(Me2NCH2C6H4)SbIII}3(B-α-AsIIIW9O33)]3– (3) have been synthesized
in one-pot reactions in aqueous medium using the appropriate lacunary
heteropolyanion precursor and organoantimony(III) source. Polyanions 1–3 were isolated as hydrated salts, (NH4)12[(PhSbIII)4(A-α-GeIVW9O34)2]·20H2O (1a), Rb9Na[(PhSbIII)4(A-α-PVW9O34)2]·20H2O (2a), and
Rb3[{2-(Me2NCH2C6H4)SbIII}3(B-α-AsIIIW9O33)]·7H2O (3a). The compounds 1a–3a were
fully characterized in the solid state using infrared (IR) spectroscopy,
single-crystal XRD, and thermogravimetric and elemental analyses.
The stability of 1–3 in aqueous solution
was confirmed by multinuclear NMR (1H, 13C, 31P, and 183W) spectroscopy. Preliminary studies
on the biological activity of 1–3 showed that all three compounds might act as potent antimicrobial
agents
Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates
Three discrete organoantimony(III)-containing heteropolytungstates
[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> (<b>1</b>), [(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-<i>α</i>-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]<sup>3–</sup> (<b>3</b>) have been synthesized
in one-pot reactions in aqueous medium using the appropriate lacunary
heteropolyanion precursor and organoantimony(III) source. Polyanions <b>1</b>–<b>3</b> were isolated as hydrated salts, (NH<sub>4</sub>)<sub>12</sub>[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>1a</b>), Rb<sub>9</sub>Na[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>2a</b>), and
Rb<sub>3</sub>[{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]·7H<sub>2</sub>O (<b>3a</b>). The compounds <b>1a</b>–<b>3a</b> were
fully characterized in the solid state using infrared (IR) spectroscopy,
single-crystal XRD, and thermogravimetric and elemental analyses.
The stability of <b>1</b>–<b>3</b> in aqueous solution
was confirmed by multinuclear NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>183</sup>W) spectroscopy. Preliminary studies
on the biological activity of <b>1</b>–<b>3</b> showed that all three compounds might act as potent antimicrobial
agents
