8 research outputs found

    19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship

    No full text
    A family of three discrete organoantimony­(III)-functionalized heteropolyanions[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate­(III) precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing the largest organoantimony-containing polyanion. All three compounds were fully characterized in the solid state via single-crystal X-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis, and their aqueous solution stability was validated by ultraviolet–visible light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity relationship for these polyanions

    19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship

    No full text
    A family of three discrete organoantimony­(III)-functionalized heteropolyanions[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate­(III) precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing the largest organoantimony-containing polyanion. All three compounds were fully characterized in the solid state via single-crystal X-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis, and their aqueous solution stability was validated by ultraviolet–visible light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity relationship for these polyanions

    19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship

    No full text
    A family of three discrete organoantimony­(III)-functionalized heteropolyanions[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>10–</sup> (<b>1</b>), [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>8–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]<sup>14–</sup> (<b>3</b>)have been prepared by one-pot reactions of the 19-tungstodiarsenate­(III) precursor [As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]<sup>14–</sup> with 2-(Me<sub>2</sub>NCH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>SbCl<sub>2</sub>. The three novel polyanions crystallized as the hydrated mixed-alkali salts Cs<sub>3</sub>KNa<sub>6</sub>[Na­{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·43H<sub>2</sub>O (<b>CsKNa-1</b>), Rb<sub>2.5</sub>K<sub>5.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}<sub>2</sub>As<sup>III</sup><sub>2</sub>W<sub>19</sub>O<sub>67</sub>(H<sub>2</sub>O)]·18H<sub>2</sub>O·Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub> (<b>RbK-2</b>), and Rb<sub>2.5</sub>K<sub>11.5</sub>[{2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>}­{WO<sub>2</sub>(H<sub>2</sub>O)}­{WO­(H<sub>2</sub>O)}<sub>2</sub>(<i>B</i>-β-As<sup>III</sup>W<sub>8</sub>O<sub>30</sub>)­(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)<sub>2</sub>]·52H<sub>2</sub>O (<b>RbK-3</b>), respectively. The number of incorporated {2-(Me<sub>2</sub>HN<sup>+</sup>CH<sub>2</sub>)­C<sub>6</sub>H<sub>4</sub>Sb<sup>III</sup>} units could be tuned by careful control of the experimental parameters. Polyanions <b>1</b> and <b>2</b> possess a dimeric sandwich-type topology, whereas <b>3</b> features a trimeric, wheel-shaped structure, representing the largest organoantimony-containing polyanion. All three compounds were fully characterized in the solid state via single-crystal X-ray diffraction (XRD), infrared (IR) spectroscopy, and thermogravimetric analysis, and their aqueous solution stability was validated by ultraviolet–visible light (UV-vis) and multinuclear (<sup>1</sup>H, <sup>13</sup>C, and <sup>183</sup>W) nuclear magnetic resonance (NMR) spectroscopy. Effective inhibition against six different types of bacteria was observed for <b>1</b> and <b>2</b>, and we could extract a structure–bioactivity relationship for these polyanions

    Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution

    No full text
    Two tetra-antimony­(III)-bridged, sandwich-type 18-tungsto-2-arsenates­(V), [(LSbIII)4(A-α-AsVW9O34)2]10– (L = Ph (1), OH (2)), were prepared and fully characterized in the solid state and in solution. Both polyanions are stable in aqueous physiological medium for at least 24 h (at concentrations ≥2.5 × 10–6 M). Despite the presence of an isostructural tetra-antimony­(III) motif in 1 and 2, distinctly different antibacterial activity was observed for both polyanions. The minimum inhibitory concentrations (MIC) of 1 (7.8–62.5 μg/mL) is lower than for any other organoantimony­(III)-containing polyoxometalate reported to date

    Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution

    No full text
    Two tetra-antimony­(III)-bridged, sandwich-type 18-tungsto-2-arsenates­(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in the solid state and in solution. Both polyanions are stable in aqueous physiological medium for at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony­(III) motif in <b>1</b> and <b>2</b>, distinctly different antibacterial activity was observed for both polyanions. The minimum inhibitory concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL) is lower than for any other organoantimony­(III)-containing polyoxometalate reported to date

    Tetra-Antimony(III)-Bridged 18-Tungsto-2-Arsenates(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>‑α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph, OH): Turning Bioactivity On and Off by Ligand Substitution

    No full text
    Two tetra-antimony­(III)-bridged, sandwich-type 18-tungsto-2-arsenates­(V), [(LSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-As<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (L = Ph (<b>1</b>), OH (<b>2</b>)), were prepared and fully characterized in the solid state and in solution. Both polyanions are stable in aqueous physiological medium for at least 24 h (at concentrations ≥2.5 × 10<sup>–6</sup> M). Despite the presence of an isostructural tetra-antimony­(III) motif in <b>1</b> and <b>2</b>, distinctly different antibacterial activity was observed for both polyanions. The minimum inhibitory concentrations (MIC) of <b>1</b> (7.8–62.5 μg/mL) is lower than for any other organoantimony­(III)-containing polyoxometalate reported to date

    Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates

    No full text
    Three discrete organoantimony­(III)-containing heteropolytungstates [(PhSbIII)4(A-α-GeIVW9O34)2]12– (1), [(PhSbIII)4(A-α-PVW9O34)2]10– (2), and [{2-(Me2NCH2C6H4)­SbIII}3(B-α-AsIIIW9O33)]3– (3) have been synthesized in one-pot reactions in aqueous medium using the appropriate lacunary heteropolyanion precursor and organoantimony­(III) source. Polyanions 1–3 were isolated as hydrated salts, (NH4)12[(PhSbIII)4(A-α-GeIVW9O34)2]·20H2O (1a), Rb9Na­[(PhSbIII)4(A-α-PVW9O34)2]·20H2O (2a), and Rb3[{2-(Me2NCH2C6H4)­SbIII}3(B-α-AsIIIW9O33)]·7H2O (3a). The compounds 1a–3a were fully characterized in the solid state using infrared (IR) spectroscopy, single-crystal XRD, and thermogravimetric and elemental analyses. The stability of 1–3 in aqueous solution was confirmed by multinuclear NMR (1H, 13C, 31P, and 183W) spectroscopy. Preliminary studies on the biological activity of 1–3 showed that all three compounds might act as potent antimicrobial agents

    Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates

    No full text
    Three discrete organoantimony­(III)-containing heteropolytungstates [(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>12–</sup> (<b>1</b>), [(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-<i>α</i>-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]<sup>10–</sup> (<b>2</b>), and [{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)­Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]<sup>3–</sup> (<b>3</b>) have been synthesized in one-pot reactions in aqueous medium using the appropriate lacunary heteropolyanion precursor and organoantimony­(III) source. Polyanions <b>1</b>–<b>3</b> were isolated as hydrated salts, (NH<sub>4</sub>)<sub>12</sub>[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-Ge<sup>IV</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>1a</b>), Rb<sub>9</sub>Na­[(PhSb<sup>III</sup>)<sub>4</sub>(<i>A</i>-α-P<sup>V</sup>W<sub>9</sub>O<sub>34</sub>)<sub>2</sub>]·20H<sub>2</sub>O (<b>2a</b>), and Rb<sub>3</sub>[{2-(Me<sub>2</sub>NCH<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)­Sb<sup>III</sup>}<sub>3</sub>(<i>B</i>-α-As<sup>III</sup>W<sub>9</sub>O<sub>33</sub>)]·7H<sub>2</sub>O (<b>3a</b>). The compounds <b>1a</b>–<b>3a</b> were fully characterized in the solid state using infrared (IR) spectroscopy, single-crystal XRD, and thermogravimetric and elemental analyses. The stability of <b>1</b>–<b>3</b> in aqueous solution was confirmed by multinuclear NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P, and <sup>183</sup>W) spectroscopy. Preliminary studies on the biological activity of <b>1</b>–<b>3</b> showed that all three compounds might act as potent antimicrobial agents
    corecore