165 research outputs found

    Charge carrier injection into insulating media: single-particle versus mean-field approach

    Full text link
    Self-consistent, mean-field description of charge injection into a dielectric medium is modified to account for discreteness of charge carriers. The improved scheme includes both the Schottky barrier lowering due to the individual image charge and the barrier change due to the field penetration into the injecting electrode that ensures validity of the model at both high and low injection rates including the barrier dominated and the space-charge dominated regimes. Comparison of the theory with experiment on an unipolar ITO/PPV/Au-device is presented.Comment: 32 pages, 9 figures; revised version accepted to PR

    Discovery of an unusual bright eclipsing binary with the longest known period: TYC 2505-672-1 / MASTER OT J095310.04+335352.8

    Full text link
    We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.Comment: 8 figures, 9 pages, Astronomy and astrophysics in prin

    Iron based superconductors: magnetism, superconductivity and electronic structure

    Get PDF
    Angle resolved photoemission spectroscopy (ARPES) reveals the features of the electronic structure of quasi-two-dimensional crystals, which are crucial for the formation of spin and charge ordering and determine the mechanisms of electron-electron interaction, including the superconducting pairing. The newly discovered iron based superconductors (FeSC) promise interesting physics that stems, on one hand, from a coexistence of superconductivity and magnetism and, on the other hand, from complex multi-band electronic structure. In this review I want to give a simple introduction to the FeSC physics, and to advocate an opinion that all the complexity of FeSC properties is encapsulated in their electronic structure. For many compounds, this structure was determined in numerous ARPES experiments and agrees reasonably well with the results of band structure calculations. Nevertheless, the existing small differences may help to understand the mechanisms of the magnetic ordering and superconducting pairing in FeSC.Comment: Invited Revie

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page

    Energetics of metal slabs and clusters: the rectangle-box model

    Full text link
    An expansion of energy characteristics of wide thin slab of thickness L in power of 1/L is constructed using the free-electron approximation and the model of a potential well of finite depth. Accuracy of results in each order of the expansion is analyzed. Size dependences of the work function and electronic elastic force for Au and Na slabs are calculated. It is concluded that the work function of low-dimensional metal structure is always smaller that of semi-infinite metal sample. A mechanism for the Coulomb instability of charged metal clusters, different from Rayleigh's one, is discussed. The two-component model of a metallic cluster yields the different critical sizes depending on a kind of charging particles (electrons or ions). For the cuboid clusters, the electronic spectrum quantization is taken into account. The calculated critical sizes of Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental data. A qualitative explanation is suggested for the Coulomb explosion of positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl

    Optical polarization observations with the MASTER robotic net

    Full text link
    We present results of optical polarization observations performed with the MASTER robotic net for three types of objects: gamma-ray bursts, supernovae, and blazars. For the Swift gamma-ray bursts GRB100906A, GRB110422A, GRB121011A, polarization observations were obtained during very early stages of optical emission. For GRB100906A it was the first prompt optical polarization observation in the world. Photometry in polarizers is presented for Type Ia Supernova 2012bh during 20 days, starting on March 27, 2012. We find that the linear polarization of SN 2012bh at the early stage of the envelope expansion was less than 3%. Polarization measurements for the blazars OC 457, 3C 454.3, QSO B1215+303, 87GB 165943.2+395846 at single nights are presented. We infer the degree of the linear polarization and polarization angle. The blazars OC 457 and 3C 454.3 were observed during their periods of activity. The results show that MASTER is able to measure substantially polarized light; at the same time it is not suitable for determining weak polarization (less than 5%) of dim objects (fainter than 16m^m). Polarimetric observations of the optical emission from gamma-ray bursts and supernovae are necessary to investigate the nature of these transient objects.Comment: 31 pages, 12 figures, 4 tables; Exposure times in Table 2 have been correcte

    Fermi surface nesting in several transition metal dichalcogenides

    Get PDF
    By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.Comment: Accepted to New J. Phy

    Intrinsic tunneling spectra of Bi_2(Sr_{2-x}La_x)CuO_6

    Full text link
    We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi_2Sr_{2-x}La_xCuO_{6+\delta} (Bi2201-La_x). Despite a difference of a factor of three in the optimal superconducting critical temperatures for Bi2201-La_{0.4} and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T*\approx 230-300K for both compounds. We find also that in Bi2201-La_x, PG humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.Comment: Submitted to Phys. Rev. Let

    Scaling behaviour of relaxation dependencies in metaloxide superconductors

    Get PDF
    Superconducting glass state has been investigated in different types of metaloxide ceramics, Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Ba-Pb-Bi-O, using the highly sensitive SQUID magnetometer. The analysis of long-time relaxation processes of thermoremanent magnetization m(sup trm) (+) = M(sub o) - Slnt displayed scaling dependence of the decay rate S = -dM/dlnt on quantity of trapped magnetic flux M(sub o): 1gs = 31g M(sub o) - observed universal dependence S is approximately M(sup 3) (sub o) seems to one of the features of superconducting glass state in metaloxide ceramics
    corecore