67 research outputs found
Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals
An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb, and Gaussian-type operators, which occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets
Tuning the magnetic ground state of a novel tetranuclear Nickel(II) molecular complex by high magnetic fields
Electron spin resonance and magnetization data in magnetic fields up to 55 T
of a novel multicenter paramagnetic molecular complex [L_2Ni_4(N_3)(O_2C
Ada)_4](Cl O_4) are reported. In this compound, four Ni centers each having a
spin S = 1 are coupled in a single molecule via bridging ligands (including a
\mu_4-azide) which provide paths for magnetic exchange. Analysis of the
frequency and temperature dependence of the ESR signals yields the relevant
parameters of the spin Hamiltonian, in particular the single ion anisotropy gap
and the g factor, which enables the calculation of the complex energy spectrum
of the spin states in a magnetic field. The experimental results give
compelling evidence for tuning the ground state of the molecule by magnetic
field from a nonmagnetic state at small fields to a magnetic one in strong
fields owing to the spin level crossing at a field of ~25 T.Comment: revised version, accepted for publication in Physical Review
Antiferromagnetic Dimers of Ni(II) in the S=1 Spin-Ladder Na_2Ni_2(C_2O_4)_3(H_2O)_2
We report the synthesis, crystal structure and magnetic properties of the S=1
2-leg spin-ladder compound Na_2Ni_2(C_2O_4)_3(H_2O)_2. The magnetic properties
were examined by magnetic susceptibility and pulsed high field magnetization
measurements. The magnetic excitations have been measured in high field high
frequency ESR. Although the Ni(II) ions form structurally a 2-leg ladder, an
isolated dimer model consistently describes the observations very well. The
analysis of the temperature dependent magnetization data leads to a magnetic
exchange constant of J=43 K along the rungs of the ladder and an average value
of the g-factor of 2.25. From the ESR measurements, we determined the single
ion anisotropy to D=11.5 K. The validity of the isolated dimer model is
supported by Quantum Monte Carlo calculations, performed for several ratios of
interdimer and intradimer magnetic exchange and taking into account the
experimentally determined single ion anisotropy. The results can be understood
in terms of the different coordination and superexchange angles of the oxalate
ligands along the rungs and legs of the 2-leg spin ladder.Comment: 8 pages, 10 figure
High field level crossing studies on spin dimers in the low dimensional quantum spin system NaT(CO)(HO) with T=Ni,Co,Fe,Mn
In this paper we demonstrate the application of high magnetic fields to study
the magnetic properties of low dimensional spin systems. We present a case
study on the series of 2-leg spin-ladder compounds
NaT(CO)(HO) with T = Ni, Co, Fe and Mn. In all
compounds the transition metal is in the high spin configuation. The
localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The
magnetic properties were examined experimentally by magnetic susceptibility,
pulsed high field magnetization and specific heat measurements. The data are
analysed using a spin hamiltonian description. Although the transition metal
ions form structurally a 2-leg ladder, an isolated dimer model consistently
describes the observations very well. This behaviour can be understood in terms
of the different coordination and superexchange angles of the oxalate ligands
along the rungs and legs of the 2-leg spin ladder. All compounds exhibit
magnetic field driven ground state changes which at very low temperatures lead
to a multistep behaviour in the magnetization curves. In the Co and Fe
compounds a strong axial anisotropy induced by the orbital magnetism leads to a
nearly degenerate ground state and a strongly reduced critical field. We find a
monotonous decrease of the intradimer magnetic exchange if the spin quantum
number is increased
Impact analysis of accidents on the traffic flow based on massive floating car data
The wide usage of GPS-equipped devices enables the mass recording of vehicle movement trajectories describing the movement behavior of the traffic participants. An important aspect of the road traffic is the impact of anomalies, like accidents, on traffic flow. Accidents are especially important as they contribute to the the aspects of safety and also influence travel time estimations. In this paper, the impact of accidents is determined based on a massive GPS trajectory and accident dataset. Due to the missing precise date of the accidents in the data set used, first, the date of the accident is estimated based on the speed profile at the accident time. Further, the temporal impact of the accident is estimated using the speed profile of the whole day. The approach is applied in an experiment on a one month subset of the datasets. The results show that more than 72% of the accident dates are identified and the impact on the temporal dimension is approximated. Moreover, it can be seen that accidents during the rush hours and on high frequency road types (e.g. motorways, trunks or primaries) have an increasing effect on the impact duration on the traffic flow
Highly conducting single-molecule topological insulators based on mono- and di-radical cations
Single-molecule topological insulators are promising candidates as conducting wires over nanometre length scales. A key advantage is their ability to exhibit quasi-metallic transport, in contrast to conjugated molecular wires which typically exhibit a low conductance that decays as the wire length increases. Here, we study a family of oligophenylene-bridged bis(triarylamines) with tunable and stable mono- or di-radicaloid character. These wires can undergo one- and two-electron chemical oxidations to the corresponding mono-cation and di-cation, respectively. We show that the oxidized wires exhibit reversed conductance decay with increasing length, consistent with the expectation for Su–Schrieffer–Heeger-type one-dimensional topological insulators. The 2.6-nm-long di-cation reported here displays a conductance greater than 0.1G0, where G0 is the conductance quantum, a factor of 5,400 greater than the neutral form. The observed conductance–length relationship is similar between the mono-cation and di-cation series. Density functional theory calculations elucidate how the frontier orbitals and delocalization of radicals facilitate the observed non-classical quasi-metallic behaviour
Ammonia adsorption and decomposition on a Ni(ll0) surface
We report UPS/XPS results for ammonia adsorption and decomposition on a Ni(1 10)-surface. At T \u3c 130 K molecular adsorption of NH 3 is observed to proceed with an initial sticking coefficient of s 0-0.1. Increasing the temperature of the nickel surface above 150 K results in partial dissociation of the adsorbed NH 3 molecules. The intermediate species are tentatively identified by their photoelectron spectra as NH-fragments. At temperatures above 350 K only atomic nitrogen is observed to populate the surface after NH 3-exposures. Our data show a similar reactivity of the Ni(ll0) surface in the NH 3-decomposition reaction as found on iron-single crystal planes. We briefly discuss this result with respect to the negligible activity of nickel as a catalyst for ammonia formation
- …