846 research outputs found
Minimal Gaugomaly Mediation
Mixed anomaly and gauge mediation ("gaugomaly'' mediation) gives a natural
solution to the SUSY flavor problem with a conventional LSP dark matter
candidate. We present a minimal version of gaugomaly mediation where the
messenger masses arise directly from anomaly mediation, automatically
generating a messenger scale of order 50 TeV. We also describe a simple
relaxation mechanism that gives rise to realistic mu and B mu terms. B is
naturally dominated by the anomaly-mediated contribution from top loops, so the
mu/B mu sector only depends on a single new parameter. In the minimal version
of this scenario the full SUSY spectrum is determined by two continuous
parameters (the anomaly- and gauge-mediated SUSY breaking masses) and one
discrete parameter (the number of messengers). We show that these simple models
can give realistic spectra with viable dark matter.Comment: 18 pages, 4 figures; v2: corrected example generating non-holomorphic
Kahler term
Brane world models need low string scale
Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale
A Comparison of Supersymmetry Breaking and Mediation Mechanisms
We give a unified treatment of different models of supersymmetry breaking and
mediation from a four dimensional effective field theory standpoint. In
particular a comparison between GMSB and various gravity mediated versions of
SUSY breaking shows that, once the former is embedded within a SUGRA framework,
there is no particular advantage to that mechanism from the point of view of
FCNC suppression. We point out the difficulties of all these scenarios - in
particular the cosmological modulus problem. We end with a discussion of
possible string theory realizations.Comment: Added clarifications and references, 20 page
The Minimal Solution to the mu/B_mu Problem in Gauge Mediation
We provide a minimal solution to the mu/B_mu problem in the gauge mediated
supersymmetry breaking by introducing a Standard Model singlet filed S with a
mass around the messenger scale which couples to the Higgs and messenger
fields. This singlet is nearly supersymmetric and acquires a relatively small
Vacuum Expectation Value (VEV) from its radiatively generated tadpole term.
Consequently, both mu and B_mu parameters receive the tree-level and one-loop
contributions, which are comparable due to the small S VEV. Because there
exists a proper cancellation in such two kinds of contributions to B_mu, we can
have a viable Higgs sector for electroweak symmetry breaking.Comment: 15 pages, 2 figures, version published on JHE
Direct CP violation in charm and flavor mixing beyond the SM
We analyze possible interpretations of the recent LHCb evidence for CP
violation in D meson decays in terms of physics beyond the Standard Model. On
general grounds, models in which the primary source of flavor violation is
linked to the breaking of chiral symmetry (left-right flavor mixing) are
natural candidates to explain this effect, via enhanced chromomagnetic
operators. In the case of supersymmetric models, we identify two motivated
scenarios: disoriented A-terms and split families. These structures predict
other non-standard signals, such as nuclear EDMs close to their present bounds
and, possibly, tiny but visible deviations in K and B physics, or even sizable
flavor-violating processes involving the top quark or the stops. Some of these
connections, especially the one with nuclear EDMs, hold beyond supersymmetry,
as illustrated with the help of prototype non-supersymmetric models.Comment: 30 pages, 6 figure
When Anomaly Mediation is UV Sensitive
Despite its successes---such as solving the supersymmetric flavor
problem---anomaly mediated supersymmetry breaking is untenable because of its
prediction of tachyonic sleptons. An appealing solution to this problem was
proposed by Pomarol and Rattazzi where a threshold controlled by a light field
deflects the anomaly mediated supersymmetry breaking trajectory, thus evading
tachyonic sleptons. In this paper we examine an alternate class of deflection
models where the non-supersymmetric threshold is accompanied by a heavy,
instead of light, singlet. The low energy form of this model is the so-called
extended anomaly mediation proposed by Nelson and Weiner, but with potential
for a much higher deflection threshold. The existence of this high deflection
threshold implies that the space of anomaly mediated supersymmetry breaking
deflecting models is larger than previously thought.Comment: 14 pages, 1 figure (version to appear in JHEP
Higgs mass and vacuum stability in the Standard Model at NNLO
We present the first complete next-to-next-to-leading order analysis of the
Standard Model Higgs potential. We computed the two-loop QCD and Yukawa
corrections to the relation between the Higgs quartic coupling (lambda) and the
Higgs mass (Mh), reducing the theoretical uncertainty in the determination of
the critical value of Mh for vacuum stability to 1 GeV. While lambda at the
Planck scale is remarkably close to zero, absolute stability of the Higgs
potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of
the near vanishing of lambda at the Planck scale, including speculations about
the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed,
figures update
Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner
The viability of a possible cosmological scenario is investigated. The
theoretical framework is the constrained next-to-minimal supersymmetric
standard model (cNMSSM), with a gravitino playing the role of the lightest
supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest
supersymmetric particle (NLSP). All the necessary constraints from colliders
and cosmology have been taken into account. For gravitino we have considered
the two usual production mechanisms, namely out-of equillibrium decay from the
NLSP, and scattering processes from the thermal bath. The maximum allowed
reheating temperature after inflation, as well as the maximum allowed gravitino
mass are determined.Comment: 20 pages, 5 figure
Dilaton Interactions and the Anomalous Breaking of Scale Invariance of the Standard Model
We discuss the main features of dilaton interactions for fundamental and
effective dilaton fields. In particular, we elaborate on the various ways in
which dilatons can couple to the Standard Model and on the role played by the
conformal anomaly as a way to characterize their interactions. In the case of a
dilaton derived from a metric compactification (graviscalar), we present the
structure of the radiative corrections to its decay into two photons, a photon
and a , two gauge bosons and two gluons, together with their
renormalization properties. We prove that, in the electroweak sector, the
renormalization of the theory is guaranteed only if the Higgs is conformally
coupled. For such a dilaton, its coupling to the trace anomaly is quite
general, and determines, for instance, an enhancement of its decay rates into
two photons and two gluons. We then turn our attention to theories containing a
non-gravitational (effective) dilaton, which, in our perturbative analysis,
manifests as a pseudo-Nambu Goldstone mode of the dilatation current ().
The infrared coupling of such a state to the two-photons and to the two-gluons
sector, and the corresponding anomaly enhancements of its decay rates in these
channels, is critically analyzed.Comment: Revised version, 42 pages, 5 figure
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
- âŠ