193 research outputs found

    On similarity and pseudo-similarity solutions of Falkner-Skan boundary layers

    Full text link
    The present work deals with the two-dimensional incompressible,laminar, steady-state boundary layer equations. First, we determinea family of velocity distributions outside the boundary layer suchthat these problems may have similarity solutions. Then, we examenin detail new exact solutions, called Pseudo--similarity, where the external velocity varies inversely-linear with the distance along the surface $ (U_e(x) = U_\infty x^{-1}). The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. Then, we examenin detail new exact solutions. The analysis shows that solutions exist only for a lateral suction. For specified conditions, we establish the existence of an infinite number of solutions, including monotonic solutions and solutions which oscillate an infinite number of times and tend to a certain limit. The properties of solutions depend onthe suction parameter. Furthermore, making use of the fourth--order Runge--Kutta scheme together with the shooting method, numerical solutions are obtained.Comment: 15 page

    Microstructural Shear Localization in Plastic Deformation of Amorphous Solids

    Full text link
    The shear-transformation-zone (STZ) theory of plastic deformation predicts that sufficiently soft, non-crystalline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both constant-stress and constant-strain-rate experiments. The analysis presented here pertains only to one-dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It uses the rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distribution of them with a range of transformation rates. Nevertheless, the results are in qualitative agreement with essential features of the available experimental data. The nonlinear theory also implies that harder materials, which do not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at points of concentrated stress.Comment: 32 pages, 6 figure

    Kink Stability of Self-Similar Solutions of Scalar Field in 2+1 Gravity

    Full text link
    The kink stability of self-similar solutions of a massless scalar field with circular symmetry in 2+1 gravity is studied, and found that such solutions are unstable against the kink perturbations along the sonic line (self-similar horizon). However, when perturbations outside the sonic line are considered, and taking the ones along the sonic line as their boundary conditions, we find that non-trivial perturbations do not exist. In other words, the consideration of perturbations outside the sonic line limits the unstable mode of the perturbations found along the sonic line. As a result, the critical solution for the scalar collapse remains critical even after the kink perturbations are taken into account.Comment: latex, one figur

    An improved \eps expansion for three-dimensional turbulence: summation of nearest dimensional singularities

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed by taking into account pole singularities at d→2d \to 2 in coefficients of the \eps expansion of universal quantities. Effectiveness of the method is illustrated by a two-loop calculation of the Kolmogorov constant in three dimensions.Comment: 4 page

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Renormalizing Partial Differential Equations

    Full text link
    In this review paper, we explain how to apply Renormalization Group ideas to the analysis of the long-time asymptotics of solutions of partial differential equations. We illustrate the method on several examples of nonlinear parabolic equations. We discuss many applications, including the stability of profiles and fronts in the Ginzburg-Landau equation, anomalous scaling laws in reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]

    Strong and weak chaos in weakly nonintegrable many-body Hamiltonian systems

    Full text link
    We study properties of chaos in generic one-dimensional nonlinear Hamiltonian lattices comprised of weakly coupled nonlinear oscillators, by numerical simulations of continuous-time systems and symplectic maps. For small coupling, the measure of chaos is found to be proportional to the coupling strength and lattice length, with the typical maximal Lyapunov exponent being proportional to the square root of coupling. This strong chaos appears as a result of triplet resonances between nearby modes. In addition to strong chaos we observe a weakly chaotic component having much smaller Lyapunov exponent, the measure of which drops approximately as a square of the coupling strength down to smallest couplings we were able to reach. We argue that this weak chaos is linked to the regime of fast Arnold diffusion discussed by Chirikov and Vecheslavov. In disordered lattices of large size we find a subdiffusive spreading of initially localized wave packets over larger and larger number of modes. The relations between the exponent of this spreading and the exponent in the dependence of the fast Arnold diffusion on coupling strength are analyzed. We also trace parallels between the slow spreading of chaos and deterministic rheology.Comment: 15 pages, 14 figure

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Dynamic Evolution of a Quasi-Spherical General Polytropic Magnetofluid with Self-Gravity

    Full text link
    In various astrophysical contexts, we analyze self-similar behaviours of magnetohydrodynamic (MHD) evolution of a quasi-spherical polytropic magnetized gas under self-gravity with the specific entropy conserved along streamlines. In particular, this MHD model analysis frees the scaling parameter nn in the conventional polytropic self-similar transformation from the constraint of n+Îł=2n+\gamma=2 with Îł\gamma being the polytropic index and therefore substantially generalizes earlier analysis results on polytropic gas dynamics that has a constant specific entropy everywhere in space at all time. On the basis of the self-similar nonlinear MHD ordinary differential equations, we examine behaviours of the magnetosonic critical curves, the MHD shock conditions, and various asymptotic solutions. We then construct global semi-complete self-similar MHD solutions using a combination of analytical and numerical means and indicate plausible astrophysical applications of these magnetized flow solutions with or without MHD shocks.Comment: 21 pages, 7 figures, accepted for publication in APS
    • …
    corecore