8,674 research outputs found
A Lookout on the Sopris National Forest
In selecting a site for a lookout station on the Sopris National Forest, the least of our troubles was to find elevation. Scores of peaks, projecting from 12,000 to 14,000 feet or more, are located all over the Forest in places suitable for taking observations at long range. It was found, however, that on excessively high situations the clouds and storms are so frequent that these become less efficient than lower points
Combinatorics of bicubic maps with hard particles
We present a purely combinatorial solution of the problem of enumerating
planar bicubic maps with hard particles. This is done by use of a bijection
with a particular class of blossom trees with particles, obtained by an
appropriate cutting of the maps. Although these trees have no simple local
characterization, we prove that their enumeration may be performed upon
introducing a larger class of "admissible" trees with possibly doubly-occupied
edges and summing them with appropriate signed weights. The proof relies on an
extension of the cutting procedure allowing for the presence on the maps of
special non-sectile edges. The admissible trees are characterized by simple
local rules, allowing eventually for an exact enumeration of planar bicubic
maps with hard particles. We also discuss generalizations for maps with
particles subject to more general exclusion rules and show how to re-derive the
enumeration of quartic maps with Ising spins in the present framework of
admissible trees. We finally comment on a possible interpretation in terms of
branching processes.Comment: 41 pages, 19 figures, tex, lanlmac, hyperbasics, epsf. Introduction
and discussion/conclusion extended, minor corrections, references adde
A possible combinatorial point for XYZ-spin chain
We formulate and discuss a number of conjectures on the ground state vectors
of the XYZ-spin chains of odd length with periodic boundary conditions and a
special choice of the Hamiltonian parameters. In particular, arguments for the
validity of a sum rule for the components, which describes in a sense the
degree of antiferromagneticity of the chain, are given.Comment: AMSLaTeX, 15 page
Three-coloring statistical model with domain wall boundary conditions. I. Functional equations
In 1970 Baxter considered the statistical three-coloring lattice model for
the case of toroidal boundary conditions. He used the Bethe ansatz and found
the partition function of the model in the thermodynamic limit. We consider the
same model but use other boundary conditions for which one can prove that the
partition function satisfies some functional equations similar to the
functional equations satisfied by the partition function of the six-vertex
model for a special value of the crossing parameter.Comment: 16 pages, notations changed for consistency with the next part,
appendix adde
Critical and Tricritical Hard Objects on Bicolorable Random Lattices: Exact Solutions
We address the general problem of hard objects on random lattices, and
emphasize the crucial role played by the colorability of the lattices to ensure
the existence of a crystallization transition. We first solve explicitly the
naive (colorless) random-lattice version of the hard-square model and find that
the only matter critical point is the non-unitary Lee-Yang edge singularity. We
then show how to restore the crystallization transition of the hard-square
model by considering the same model on bicolored random lattices. Solving this
model exactly, we show moreover that the crystallization transition point lies
in the universality class of the Ising model coupled to 2D quantum gravity. We
finally extend our analysis to a new two-particle exclusion model, whose
regular lattice version involves hard squares of two different sizes. The exact
solution of this model on bicolorable random lattices displays a phase diagram
with two (continuous and discontinuous) crystallization transition lines
meeting at a higher order critical point, in the universality class of the
tricritical Ising model coupled to 2D quantum gravity.Comment: 48 pages, 13 figures, tex, harvmac, eps
Voter Model with Time dependent Flip-rates
We introduce time variation in the flip-rates of the Voter Model. This type
of generalisation is relevant to models of ageing in language change, allowing
the representation of changes in speakers' learning rates over their lifetime
and may be applied to any other similar model in which interaction rates at the
microscopic level change with time. The mean time taken to reach consensus
varies in a nontrivial way with the rate of change of the flip-rates, varying
between bounds given by the mean consensus times for static homogeneous (the
original Voter Model) and static heterogeneous flip-rates. By considering the
mean time between interactions for each agent, we derive excellent estimates of
the mean consensus times and exit probabilities for any time scale of flip-rate
variation. The scaling of consensus times with population size on complex
networks is correctly predicted, and is as would be expected for the ordinary
voter model. Heterogeneity in the initial distribution of opinions has a strong
effect, considerably reducing the mean time to consensus, while increasing the
probability of survival of the opinion which initially occupies the most slowly
changing agents. The mean times to reach consensus for different states are
very different. An opinion originally held by the fastest changing agents has a
smaller chance to succeed, and takes much longer to do so than an evenly
distributed opinion.Comment: 16 pages, 6 figure
A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings
Combining tree decomposition and transfer matrix techniques provides a very
general algorithm for computing exact partition functions of statistical models
defined on arbitrary graphs. The algorithm is particularly efficient in the
case of planar graphs. We illustrate it by computing the Potts model partition
functions and chromatic polynomials (the number of proper vertex colourings
using Q colours) for large samples of random planar graphs with up to N=100
vertices. In the latter case, our algorithm yields a sub-exponential average
running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the
exponential running time ~ exp(0.245 N) provided by the hitherto best known
algorithm. We study the statistics of chromatic roots of random planar graphs
in some detail, comparing the findings with results for finite pieces of a
regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded.
Version 3 shows that the worst-case running time is sub-exponential in the
number of vertice
Critical and Multicritical Semi-Random (1+d)-Dimensional Lattices and Hard Objects in d Dimensions
We investigate models of (1+d)-D Lorentzian semi-random lattices with one
random (space-like) direction and d regular (time-like) ones. We prove a
general inversion formula expressing the partition function of these models as
the inverse of that of hard objects in d dimensions. This allows for an exact
solution of a variety of new models including critical and multicritical
generalized (1+1)-D Lorentzian surfaces, with fractal dimensions ,
k=1,2,3,..., as well as a new model of (1+2)-D critical tetrahedral complexes,
with fractal dimension . Critical exponents and universal scaling
functions follow from this solution. We finally establish a general connection
between (1+d)-D Lorentzian lattices and directed-site lattice animals in (1+d)
dimensions.Comment: 44 pages, 15 figures, tex, harvmac, epsf, references adde
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
- …