469 research outputs found
Performance analysis and optimization of the JOREK code for many-core CPUs
This report investigates the performance of the JOREK code on the Intel
Knights Landing and Skylake processor architectures. The OpenMP scaling of the
matrix construction part of the code was analyzed and improved synchronization
methods were implemented. A new switch was implemented to control the number of
threads used for the linear equation solver independently from other parts of
the code. The matrix construction subroutine was vectorized, and the data
locality was also improved. These steps led to a factor of two speedup for the
matrix construction
Development and application of a hybrid MHD-kinetic model in JOREK
Energetic particle (EP) driven instabilities will be of strongly increased
relevance in future burning plasmas as the EP pressure will be very large
compared to the thermal plasma. Understanding the interaction of EPs and bulk
plasma is crucial for developing next-generation fusion devices. In this work,
the JOREK MHD code is extended to allow for the simulation of EP instabilities
at high EP pressures using realistic plasma and EP parameter in a full-f
formulation with anisotropic pressure coupling to the bluid background. The
code is first benchmarked linearly for the ITPA-TAE as well as the experiment
based AUG-NLED cases, obtaining good agreement to other codes. Then, it is
applied to a high energetic particle pressure discharge in the ASDEX Upgrade
tokamak using a realistic non-Maxwellian distribution of EPs, reproducing
aspects of the experimentally observed instabilities. Non-linear applications
are possible based on the implentation, but will require dedicated verification
and validation left for future work
Early evolution of electron cyclotron driven current during suppression of tearing modes in a circular tokamak
When electron cyclotron (EC) driven current is first applied to the inside of
a magnetic island, the current spreads throughout the island and after a short
period achieves a steady level. Using a two equation fluid model for the EC
current that allows us to examine this early evolution in detail, we analyze
high-resolution simulations of a 2/1 classical tearing mode in a low-beta large
aspect-ratio circular tokamak. These simulations use a nonlinear 3D reduced-MHD
fluid model and the JOREK code. During the initial period where the EC driven
current grows and spreads throughout the magnetic island, it is not a function
of the magnetic flux. However, once it has reached a steady-state, it should be
a flux function. We demonstrate numerically that if sufficiently resolved
toroidally, the steady-state EC driven current becomes approximately a flux
function. We discuss the physics of this early period of EC evolution and its
impact on the size of the magnetic island.Comment: 12 pages, 7 figure
Understanding the effect resonant magnetic perturbations have on ELMs
All current estimations of the energy released by type I ELMs indicate that,
in order to ensure an adequate lifetime of the divertor targets on ITER, a
mechanism is required to decrease the amount of energy released by an ELM, or
to eliminate ELMs altogether. One such amelioration mechanism relies on
perturbing the magnetic field in the edge plasma region, either leading to more
frequent, smaller ELMs (ELM mitigation) or ELM suppression. This technique of
Resonant Magnetic Perturbations (RMPs) has been employed to suppress type I
ELMs at high collisionality/density on DIII-D, ASDEX Upgrade, KSTAR and JET and
at low collisionality on DIII-D. At ITER-like collisionality the RMPs enhance
the transport of particles or energy and keep the edge pressure gradient below
the 2D linear ideal MHD critical value that would trigger an ELM, whereas at
high collisionality/density the type I ELMs are replaced by small type II ELMs.
Although ELM suppression only occurs within limitied operational ranges, ELM
mitigation is much more easily achieved. The exact parameters that determine
the onset of ELM suppression are unknown but in all cases the magnetic
perturbations produce 3D distortions to the plasma and enhanced particle
transport. The incorporation of these 3D effects in codes will be essential in
order to make quantitative predictions for future devices.Comment: 32 pages, 9 figure
Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents
The dynamics of large scale plasma instabilities can strongly be influenced
by the mutual interaction with currents flowing in conducting vessel
structures. Especially eddy currents caused by time-varying magnetic
perturbations and halo currents flowing directly from the plasma into the walls
are important. The relevance of a resistive wall model is directly evident for
Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However,
also the linear and non-linear properties of most other large-scale
instabilities may be influenced significantly by the interaction with currents
in conducting structures near the plasma. The understanding of halo currents
arising during disruptions and VDEs, which are a serious concern for ITER as
they may lead to strong asymmetric forces on vessel structures, could also
benefit strongly from these non-linear modeling capabilities. Modeling the
plasma dynamics and its interaction with wall currents requires solving the
magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry
consistently coupled with a model for the vacuum region and the resistive
conducting structures. With this in mind, the non-linear finite element MHD
code JOREK has been coupled with the resistive wall code STARWALL, which allows
to include the effects of eddy currents in 3D conducting structures in
non-linear MHD simulations. This article summarizes the capabilities of the
coupled JOREK-STARWALL system and presents benchmark results as well as first
applications to non-linear simulations of RWMs, VDEs, disruptions triggered by
massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives
for extending the model to halo currents are described.Comment: Proceeding paper for Theory of Fusion Plasmas (Joint Varenna-Lausanne
International Workshop), Varenna, Italy (September 1-5, 2014); accepted for
publication in: to Journal of Physics: Conference Serie
Simulations of COMPASS vertical displacement events with a self-consistent model for halo currents including neutrals and sheath boundary conditions
The understanding of the halo current properties during disruptions is key to design and operate large scale tokamaks in view of the large thermal and electromagnetic loads that they entail. For the first time, we present a fully self-consistent model for halo current simulations including neutral particles and sheath boundary conditions. The model is used to simulate vertical displacement events (VDEs) occurring in the COMPASS tokamak. Recent COMPASS experiments have shown that the parallel halo current density at the plasma-wall interface is limited by the ion saturation current during VDE-induced disruptions. We show that usual magneto-hydrodynamic boundary conditions can lead to the violation of this physical limit and we implement this current density limitation through a boundary condition for the electrostatic potential. Sheath boundary conditions for the density, the heat flux, the parallel velocity and a realistic parameter choice (e.g. Spitzer's resistivity and Spitzer-Harm parallel thermal conductivity) extend present VDE simulations beyond the state of the art. Experimental measurements of the current density, temperature and heat flux profiles at the COMPASS divertor are compared with the results obtained from axisymmetric simulations. Since the ion saturation current density (Jsat) is shown to be essential to determine the halo current profile, parametric scans are performed to study its dependence on different quantities such as the plasma resistivity and the particle and heat diffusion coefficients. In this respect, the plasma resistivity in the halo region broadens significantly the Jsat profile, increasing the halo width at a similar total halo current
- …