31 research outputs found

    Vortices in self-gravitating disks

    Full text link
    Vortices are believed to greatly help the formation of km sized planetesimals by collecting dust particles in their centers. However, vortex dynamics is commonly studied in non-self-gravitating disks. The main goal here is to examine the effects of disk self-gravity on the vortex dynamics via numerical simulations. In the self-gravitating case, when quasi-steady gravitoturbulent state is reached, vortices appear as transient structures undergoing recurring phases of formation, growth to sizes comparable to a local Jeans scale, and eventual shearing and destruction due to gravitational instability. Each phase lasts over 2-3 orbital periods. Vortices and density waves appear to be coupled implying that, in general, one should consider both vortex and density wave modes for a proper understanding of self-gravitating disk dynamics. Our results imply that given such an irregular and rapidly changing, transient character of vortex evolution in self-gravitating disks it may be difficult for such vortices to effectively trap dust particles in their centers that is a necessary process towards planet formation.Comment: to appear in the proceedings of Cool Stars, Stellar Systems and The Sun, 15th Cambridge Workshop, St. Andrews, Scotland, July 21-25, 200

    Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows

    Get PDF
    We find and investigate via numerical simulations self-sustained two-dimensional turbulence in a magnetohydrodynamic flow with a maximally simple configuration: plane, noninflectional (with a constant shear of velocity) and threaded by a parallel uniform background magnetic field. This flow is spectrally stable, so the turbulence is subcritical by nature and hence it can be energetically supported just by transient growth mechanism due to shear flow nonnormality. This mechanism appears to be essentially anisotropic in spectral (wavenumber) plane and operates mainly for spatial Fourier harmonics with streamwise wavenumbers less than a ratio of flow shear to the Alfv\'{e}n speed, ky<S/uAk_y < S/u_A (i.e., the Alfv\'{e}n frequency is lower than the shear rate). We focused on the analysis of the character of nonlinear processes and underlying self-sustaining scheme of the turbulence, i.e., on the interplay between linear transient growth and nonlinear processes, in spectral plane. Our study, being concerned with a new type of the energy-injecting process for turbulence -- the transient growth, represents an alternative to the main trends of MHD turbulence research. We find similarity of the nonlinear dynamics to the related dynamics in hydrodynamic flows -- to the \emph{bypass} concept of subcritical turbulence. The essence of the analyzed nonlinear MHD processes appears to be a transverse redistribution of kinetic and magnetic spectral energies in wavenumber plane [as occurs in the related hydrodynamic flow, see Horton et al., Phys. Rev. E {\bf 81}, 066304 (2010)] and differs fundamentally from the existing concepts of (anisotropic direct and inverse) cascade processes in MHD shear flows.Comment: 19 pages, 7 figures, published in Phys. Rev. E 89, 043101 (2014

    Planetesimal Formation In Self-Gravitating Discs

    Full text link
    We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local over-densities which may be able to undergo gravitational collapse. We expand on these findings, using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the Pencil Code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10cm sized particles in a disc following the profiles of Clarke (2009) around a solar mass star, causing it to reach concentrations several orders of magnitude larger than the particles mean surface density. We also study the velocity dispersion of the particles, finding that the spiral structure can result in the particle velocities becoming highly ordered, having a narrow velocity dispersion. This implies low relative velocities between particles, which in turn suggests that collisions are typically low energy, lessening the likelihood of grain destruction. Both these findings suggest that the density waves that arise due to gravitational instabilities in the early stages of star formation provide excellent sites for the formation of large, planetesimal-sized objects.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Stability of self-gravitating discs under irradiation

    Full text link
    Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the strength of disc self-gravity, and can suppress it entirely if the disc is maintained above the threshold for linear instability. However, its impact on the susceptibility of the disc to fragmentation is less clear. We use two-dimensional numerical simulations to investigate the evolution of self-gravitating discs as a function of the local cooling time and strength of irradiation. In the regime where the disc does not fragment, we show that local thermal equilibrium continues to determine the stress - which can be represented as an effective viscous alpha - out to very long cooling times (at least 240 dynamical times). In this regime, the power spectrum of the perturbations is uniquely set by the effective viscous alpha and not by the cooling rate. Fragmentation occurs for cooling times tau < beta_crit / Omega, where beta_crit is a weak function of the level of irradiation. We find that beta_crit declines by approximately a factor of two, as irradiation is increased from zero up to the level where instability is almost quenched. The numerical results imply that irradiation cannot generally avert fragmentation of self-gravitating discs at large radii; if other angular momentum transport sources are weak mass will build up until self-gravity sets in, and fragmentation will ensue.Comment: MNRAS, in pres

    Transient growth and coupling of vortex and wave modes in self-gravitating gaseous discs

    Full text link
    Flow nonnormality induced linear transient phenomena in thin self-gravitating astrophysical discs are studied in the shearing sheet approximation. The considered system includes two modes of perturbations: vortex and (spiral density) wave. It is shown that self-gravity considerably alters the vortex mode dynamics -- its transient (swing) growth may be several orders of magnitude stronger than in the non-self-gravitating case and 2-3 times larger than the transient growth of the wave mode. Based on this finding, we comment on the role of vortex mode perturbations in a gravitoturbulent state. Also described is the linear coupling of the perturbation modes, caused by the differential character of disc rotation. The coupling is asymmetric -- vortex mode perturbations are able to excite wave mode ones, but not vice versa. This asymmetric coupling lends additional significance to the vortex mode as a participant in spiral density waves and shocks manifestations in astrophysical discs.Comment: 10 pages, 8 figure

    Excitation of spiral density waves by convection in accretion discs

    Full text link
    Motivated by the recent results of \citet{Lesur_Ogilvie10} on the transport properties of incompressible convection in protoplanetary discs, in this paper we study the role of compressibility and hence of another basic mode -- spiral density waves -- in convective instability in discs. We analyse the linear dynamics of non-axisymmetric convection and spiral density waves in a Keplerian disc with superadiabatic vertical stratification using the local shearing box approach. It is demonstrated that the shear associated with Keplerian differential rotation introduces a novel phenomenon, it causes these two perturbation modes to become coupled: during evolution the convective mode generates (trailing) spiral density waves and can therefore be regarded as a new source of spiral density waves in discs. The wave generation process studied here owes its existence solely to shear of the disc's differential rotation, and is a special manifestation of a more general linear mode coupling phenomena universally taking place in flows with an inhomogeneous velocity profile. We quantify the efficiency of spiral density wave generation by convection as a function of azimuthal and vertical wavenumbers of these modes and find that it is maximal and most powerful when both these length-scales are comparable to the disc scale height. We also show that unlike the convective mode, which tends to transport angular momentum inwards in the linear regime, the spiral density waves transport angular momentum outwards. Based on these findings, we suggest that in the non-linear regime spiral density waves generated by convection may play a role in enhancing the transport of angular momentum due the convective mode alone, which is actually being changed to outward by non-linearity, as indicated by above-mentioned recent developments.Comment: 17 pages, 8 figures, accepted for publication in MNRA
    corecore