1,255 research outputs found

    Thermal transport of the XXZ chain in a magnetic field

    Full text link
    We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic fields where magnetothermal effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of its magnitude with increasing field strength and a non-monotonic field-dependence of the peak position. Second, for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime the mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced quantum critical line between the para- and ferromagnetic region we propose a universal low-temperature behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added, typos correcte

    Coherent spin-current oscillations in transverse magnetic fields

    Full text link
    We address the coherence of the dynamics of spin-currents with components transverse to an external magnetic field for the spin-1/2 Heisenberg chain. We study current autocorrelations at finite temperatures and the real-time dynamics of currents at zero temperature. Besides a coherent Larmor oscillation, we find an additional collective oscillation at higher frequencies, emerging as a coherent many-magnon effect at low temperatures. Using numerical and analytical methods, we analyze the oscillation frequency and decay time of this coherent current-mode versus temperature and magnetic field.Comment: 4 pages, 5 figures (and supplemental material: 4 pages, 6 figures

    Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension

    Get PDF
    We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions approach stationary values quickly due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature 467, 567 (2010).Comment: 8 pages including supplementary material, 9 eps figures, revised version as published, some text moved to the supplemental materia

    Exact results for nonlinear ac-transport through a resonant level model

    Get PDF
    We obtain exact results for the transport through a resonant level model (noninteracting Anderson impurity model) for rectangular voltage bias as a function of time. We study both the transient behavior after switching on the tunneling at time t = 0 and the ensuing steady state behavior. Explicit expressions are obtained for the ac-current in the linear response regime and beyond for large voltage bias. Among other effects, we observe current ringing and PAT (photon assisted tunneling) oscillations.Comment: 7 page

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl

    Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12

    Get PDF
    X-ray and electron diffraction measurements on the metal-insulator (M-I) transition compound PrRu4_4P12_{12} have revealed the emergence of a periodic ordering of charge density around the Pr atoms. It is found that the ordering is associated with the onset of a low temperature insulator phase. These conclusions are supported by the facts that the space group of the crystal structure transforms from Im3ˉ\bar{3} to Pm3ˉ\bar{3} below the M-I transition temperature and also that the temperature dependence of the superlattice peaks in the insulator phase follows the squared BCS function. The M-I transition could be originated from the perfect nesting of the Fermi surface and/or the instability of the ff electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Constraints on narrow exotic states from K+p and K0_Lp scattering data

    Full text link
    We consider the effect of exotic S=+1 resonances Theta+ and Theta++ on K+p elastic scattering data (total cross section) and the process K0_Lp-->K0_Sp. Data near the observed Theta+(1540) are examined for evidence of additional states. The width limit for a Theta++ state is reconsidered and shown to be much less than 1 MeV.Comment: 4 pages, 3 eps figures; minor corrections, one fig adde

    Calculation of Optical Conductivity of YbB12_{12} using Realistic Tight-Binding Model

    Get PDF
    Based on the previously reported tight-binding model fitted to the LDA+U band calculation, optical conductivity of the prototypical Kondo insulator YbB12_{12} is calculated theoretically. Many-body effects are taken into account by the self-consistent second order perturbation theory. The gross shape of the optical conductivity observed in experiments are well described by the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn. Vol.73, No.10 (2004
    corecore