6 research outputs found

    A sharp stability criterion for the Vlasov-Maxwell system

    Full text link
    We consider the linear stability problem for a 3D cylindrically symmetric equilibrium of the relativistic Vlasov-Maxwell system that describes a collisionless plasma. For an equilibrium whose distribution function decreases monotonically with the particle energy, we obtained a linear stability criterion in our previous paper. Here we prove that this criterion is sharp; that is, there would otherwise be an exponentially growing solution to the linearized system. Therefore for the class of symmetric Vlasov-Maxwell equilibria, we establish an energy principle for linear stability. We also treat the considerably simpler periodic 1.5D case. The new formulation introduced here is applicable as well to the nonrelativistic case, to other symmetries, and to general equilibria

    A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution

    Get PDF
    30 pags., 10 figs., 1 tab.Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.Cancer Council NSW RG 11-07 Tracy M Bryan, Cancer Institute NSW Aaron Lavel Moye, Australian Research Council FL140100027 Antoine M van Oijen, Ernest and Piroska Major Foundation Scott B Cohen, Natural Sciences and Engineering Research Council of Canada, Masad J Damha Centre of Excellence for Innovation in Chemistry PERCH-CIC Siritron Samosorn Research Unit of Natural Products and Organic Synthesis for Drug Discovery NPOS 405/2560 Siritron Samosorn Cancer Council NSW RG 16-10 Tracy M Brya

    Computational performance of Free Mesh Method applied to continuum mechanics problems

    Get PDF
    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics

    Ecosystem feedbacks on climate at the landscape scale

    No full text
    Vegetation controls aspects of climate at all scales. These controls operate through fluxes of mass (water vapour, particulates, trace gases, condensation nuclei, and ice nuclei) and energy (latent and sensible heat, radiative exchanges, and momentum dissipation) between the biosphere and the atmosphere. The role these fluxes play in controlling minimum and maximum temperature, temperature range, rainfall, and precipitation processes are detailed. On the hemispheric scale, the importance of evapotranspiration, vegetation surface roughness, and vegetation albedo in the current generation of atmospheric general circulation models is reviewed. Finally, I assess at the planetary scale the global climate effects of biogenic emissions that are well mixed throughout the troposphere. I show that daily maximum and minimum temperatures are, in part, controlled by the emission of non-methane hydrocarbons and transpired water vapour. In many regions, a substantial fraction of the rainfall arises from upstream evapotranspiration rather than from oceanic evaporation. Biosphere evapotranspiration, surface roughness, and albedo are key controls in the general circulation of the atmosphere: climate models that lack adequate specifications for these biosphere attributes fail. The biosphere modulates climate at all scales

    Current knowledge of vector-borne zoonotic pathogens in Zambia: A clarion call to scaling-up One Health research in the wake of emerging and re-emerging infectious diseases

    No full text
    Author summaryDespite vector-borne zoonoses being a major public health threat globally, they are often overlooked, particularly among resource-constrained countries in sub-Saharan Africa, including Zambia. Therefore, we reviewed the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. We focussed on mosquito-, tick-, flea- and tsetse fly-borne zoonotic pathogens reported in the country. Although we found evidence of circulation of several vector-borne zoonotic pathogens among vectors, animals and humans, clinical cases in humans were rarely reported. This suggests sparse capacity for diagnosis of vector-borne pathogens in healthcare facilities in the country and possibly limited awareness and knowledge of the local epidemiology of these infectious agents. Establishment of facility-based surveillance of vector-borne zoonoses in health facilities could provide valuable insights on morbidity, disease severity, and mortalities associated with infections as well as immune responses. In addition, there is also need for increased genomic surveillance of vector-borne pathogens in vectors and animals and humans for a better understanding of the molecular epidemiology of these diseases in Zambia. Furthermore, vector ecology studies aimed at understanding the drivers of vector abundance, pathogen host range (i.e., including the range of vectors and reservoirs), parasite-host interactions and factors influencing frequency of human-vector contacts should be prioritized. The study revealed the need for Zambia to scale-up One Health research in emerging and re-emerging infectious diseases to enable the country to be better prepared for future epidemics, including pandemics. BackgroundAlthough vector-borne zoonotic diseases are a major public health threat globally, they are usually neglected, especially among resource-constrained countries, including those in sub-Saharan Africa. This scoping review examined the current knowledge and identified research gaps of vector-borne zoonotic pathogens in Zambia. Methods and findingsMajor scientific databases (Web of Science, PubMed, Scopus, Google Scholar, CABI, Scientific Information Database (SID)) were searched for articles describing vector-borne (mosquitoes, ticks, fleas and tsetse flies) zoonotic pathogens in Zambia. Several mosquito-borne arboviruses have been reported including Yellow fever, Ntaya, Mayaro, Dengue, Zika, West Nile, Chikungunya, Sindbis, and Rift Valley fever viruses. Flea-borne zoonotic pathogens reported include Yersinia pestis and Rickettsia felis. Trypanosoma sp. was the only tsetse fly-borne pathogen identified. Further, tick-borne zoonotic pathogens reported included Crimean-Congo Haemorrhagic fever virus, Rickettsia sp., Anaplasma sp., Ehrlichia sp., Borrelia sp., and Coxiella burnetii. ConclusionsThis study revealed the presence of many vector-borne zoonotic pathogens circulating in vectors and animals in Zambia. Though reports of human clinical cases were limited, several serological studies provided considerable evidence of zoonotic transmission of vector-borne pathogens in humans. However, the disease burden in humans attributable to vector-borne zoonotic infections could not be ascertained from the available reports and this precludes the formulation of national policies that could help in the control and mitigation of the impact of these diseases in Zambia. Therefore, there is an urgent need to scale-up "One Health" research in emerging and re-emerging infectious diseases to enable the country to prepare for future epidemics, including pandemics