1,779 research outputs found

    The Time of Flight System of the AMS-02 Space Experiment

    Full text link
    The Time-of-Flight (TOF) system of the AMS detector gives the fast trigger to the read out electronics and measures velocity, direction and charge of the crossing particles. The new version of the detector (called AMS-02) will be installed on the International Space Station on March 2004. The fringing field of the AMS-02 superconducting magnet is 1.0÷2.51.0\div2.5 kG where the photomultiplers (PM) are installed. In order to be able to operate with this residual field, a new type of PM was chosen and the mechanical design was constrained by requiring to minimize the angle between the magnetic field vector and the PM axis. Due to strong field and to the curved light guides, the time resolution will be 150÷180150\div180 ps, while the new electronics will allow for a better charge measurement.Comment: 5 pages, 4 figures. Proc. of 7th Int. Conf. on Adv. Tech. and Part. Phys., 15-19 October 2001,Como (Italy

    Making sense of the sharing economy: a category formation approach

    Get PDF
    The sharing economy (SE) has drawn significant attention from several society stakeholders in the last five years. While business actors are interested in financial opportunities to meet consumer needs, new business models, academia and governmental organisations are concerned with potential unintended effects on society and the environment. Despite its notable global growth, there is still a lack of more solid ground in understanding its origins and respective mechanisms through which it has been evolving as a category. This research addresses the problematics of the origins and ascendency of the SE by examining the process by which it is arising as a new category, searching for conceptual clarification, and pinpointing the legitimacy granted by stakeholders. Our guiding research questions are: how the SE was formed and evolved as a category, and as a category, is the SE legitimate? Additionally, we attempt to identify the nature of the SE as a category. Making a historical analysis of the expression SE and its equivalents, this paper deepens the discussion about the SE’s nature by providing evidence that it has predominantly been formed by emergence processes, comprising social movement, similarity clustering, and truce components, which render the SE a particular case of category formation and allow communication, entrepreneurship, regulation, and research about what it is. Moreover, the findings reveal a generalised legitimacy granted to the SE by a vast number of stakeholders, although still lacking the consolidation of socio-political legitimation. The SE’s nature seems to fall into a metaphorical approach, notably, the notion of radial categories.info:eu-repo/semantics/publishedVersio

    Ultrasound Triggered ZnO-Based Devices for Tunable and Multifaceted Biomedical Applications

    Get PDF
    Smart materials able to respond to an external stimulus or an environmental condition represent milestone developments in modern medicine. Among them, zinc oxide (ZnO) is a highly intriguing inorganic material with versatile morphologies/shapes and multifunctional properties like piezoelectricity, enhanced reactive oxygen species (ROS) generation, and antimicrobial ones. Here, the fabrication of smart ZnO-based films is shown that can remotely be activated by ultrasound (US). US exposure induces electrical potentials on the fabricated devices that can be exploited to stimulate electrically responsive cells or promote ROS generation for cancer treatment. ZnO microparticles with surface nanostructuring are thus synthesized and processed in the form of a paste to deposit thin films on flexible polymeric supports. ZnO paste formulation and the fabrication procedure of the final device are optimized in terms of uniformity, hydrophilicity, and purity. Graphene oxide and poly(2-hydroxyethyl methacrylate) are also layered onto the ZnO films in order to provide the devices with additional functionalities. ROS generation and electro-mechanical performances upon US stimulation are evaluated for all of the developed devices. Finally, biocompatibility studies are conducted with osteoblast-like cell cultures for possible applications in the contexts of bone tissue engineering/therapy

    The AMS-02 Time of Flight System. Final Design

    Full text link
    The AMS-02 detector is a superconducting magnetic spectrometer that will operate on the International Space Station. The time of flight (TOF) system of AMS-02 is composed by four scintillator planes with 8, 8, 10, 8 counters each, read at both ends by a total of 144 phototubes. This paper describes the new design, the expected performances, and shows preliminary results of the ion beam test carried on at CERN on October 2002.Comment: 4 pages, 6 EPS figures. Proc. of the 28th ICRC (2003

    Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide

    Get PDF
    Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment, strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ – O and V5+ – O chemical bonds, together with the corresponding easier rotation under the application of an external electric field, positively affected the piezoelectric response and increased conductivity. This was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient of 85 pm·V−1, and also by ferroelectric switching domains with a well-defined polarization hysteresis curve, featuring a residual polarization of 12.5 μC∙cm−2

    Structure-Dependent Influence of Moisture on Resistive Switching Behavior of ZnO Thin Films

    Get PDF
    Resistive switching mechanisms underlying memristive devices are widely investigated, and the importance as well as influence of ambient conditions on the electrical performances of memristive cells are already recognized. However, detailed understanding of the ambient effect on the switching mechanism still remains a challenge. This work presents an experimental investigation on the effect of moisture on resistive switching performances of ZnO-based electrochemical metallization memory cells. ZnO thin films are grown by chemical vapor deposition (CVD) and radio frequency sputtering. Water molecules are observed to influence electrical resistance of ZnO by affecting the electronic conduction mechanism and by providing additional species for ionic conduction. By influencing dissolution and migration of ionic species underlying resistive switching events, moisture is reported to tune resistive switching parameters. In particular, the presence of H2O is responsible for a decrease of the forming and SET voltages and an increase of the ON/OFF resistance ratio in both CVD and sputtered films. The effect of moisture on resistive switching performance is found to be more pronounced in case of sputtered films where the reduced grain size is responsible for an increased adsorption of water molecules and an increased amount of possible pathways for ion migration
    • …