4,318 research outputs found
High Rate Performance of Drift Tubes
This article describes calculations and measurements of space charge effects
due to high rate irradiation in high resolution drift tubes. Two main items are
studied: the reduction of the gas gain and changes of the drift time. Whereas
the gain reduction is similar for all gases and unavoidable, the drift time
changes depend on the kind of gas that is used. The loss in resolution due to
high particle rate can be minimized with a suitable gas. This behaviour is
calculable, allowing predictions for new gas mixtures.Comment: 20 pages, submitted to Nuclear Instruments and Methods
The First Year of the Large Hadron Collider: A Brief Review
The first year of LHC data taking provided an integrated luminosity of about
35/pb in proton-proton collisions at sqrt(s)=7 TeV. The accelerator and the
experiments have demonstrated an excellent performance. The experiments have
obtained important physics results in many areas, ranging from tests of the
Standard Model to searches for new particles. Among other results the physics
highlights have been the measurements of the W-, Z-boson and t t-bar production
cross-sections, improved limits on supersymmetric and other hypothetical
particles and the observation of jet-quenching, elliptical flow and J/Psi
suppression in lead-lead collisions at sqrt(sNN) = 2.76 TeV.Comment: 11 pages, 9 figures, invited brief review for Mod. Phys. Lett.
A Gas Monitoring Chamber for the ATLAS Muon Monitored Drift Tube(MDT) System
The ATLAS Muon Spectrometer incorporates MDT precision chambers used for precise track reconstruction. Since the MDT resolution depends crucially on the electron drift velocity in the operating gas, a monitoring chamber is designed and constructed to precisely monitor the gas properties in real time. This chamber continuously samples the operating gas and measures the electron drift velocity in the operating gas over a wide range of electric field strength with very high resolution and short response time. In order to validate the feasibility and optimize the design, extensive simulations based on Garfield and 3D/2D finite element method(FEM) are done, which include mechanics, electrostatics, thermodynamics and computational fluid dynamics(CFD). This monitoring chamber enables the measurement of the drift velocity spectra over a varying electric field with a wide range, then very small changes and contaminations of the gas mixture can be detected. Results obtained at CERN and in the lab will be presented as well
The survey and reference assisted assembly of the Octopus vulgaris genome
The common octopus, Octopus vulgaris, is an active marine predator known for the richness and plasticity of its behavioral repertoire, and remarkable learning and memory capabilities. Octopus and other coleoid cephalopods, cuttlefish and squid, possess the largest nervous system among invertebrates, both for cell counts and body to brain size. O. vulgaris has been at the center of a long-tradition of research into diverse aspects of its biology. To leverage research in this iconic species, we generated 270\u2009Gb of genomic sequencing data, complementing those available for the only other sequenced congeneric octopus, Octopus bimaculoides. We show that both genomes are similar in size, but display different levels of heterozygosity and repeats. Our data give a first quantitative glimpse into the rate of coding and non-coding regions and support the view that hundreds of novel genes may have arisen independently despite the close phylogenetic distance. We furthermore describe a reference-guided assembly and an open genomic resource (CephRes-gdatabase), opening new avenues in the study of genomic novelties in cephalopods and their biology
Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP
The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb
Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from
hadronic Z0 decay events produced in e+e- annihilations. A subsample of these
jets is identified which exhibits a large gap in the rapidity distribution of
particles within the jet. After imposing the requirement of a rapidity gap, the
gluon jet purity is 86%. These jets are observed to demonstrate a high degree
of sensitivity to the presence of color reconnection, i.e. higher order QCD
processes affecting the underlying color structure. We use our data to test
three QCD models which include a simulation of color reconnection: one in the
Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman
in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection
models can describe our gluon jet measurements only if very large values are
used for the cutoff parameters which serve to terminate the parton showers, and
that the description of inclusive Z0 data is significantly degraded in this
case. We conclude that color reconnection as implemented by these two models is
disfavored. The signal from the Herwig color reconnection model is less clear
and we do not obtain a definite conclusion concerning this model. In a separate
study, we follow recent theoretical suggestions and search for glueball-like
objects in the leading part of the gluon jets. No clear evidence is observed
for these objects.Comment: 42 pages, 18 figure
Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and
flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are
measured in e+e- annihilations from data collected at centre-of-mass energies
of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are
defined by hemispheres of inclusive hadronic events, while the biased jet
measurements are based on three-jet events selected with jet algorithms.
Several methods are employed to extract the fragmentation functions over a wide
range of scales. Possible biases are studied in the results are obtained. The
fragmentation functions are compared to results from lower energy e+e-
experiments and with earlier LEP measurements and are found to be consistent.
Scaling violations are observed and are found to be stronger for the
fragmentation functions of gluon jets than for those of quarks. The measured
fragmentation functions are compared to three recent theoretical
next-to-leading order calculations and to the predictions of three Monte Carlo
event generators. While the Monte Carlo models are in good agreement with the
data, the theoretical predictions fail to describe the full set of results, in
particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.
Search for the Standard Model Higgs Boson with the OPAL Detector at LEP
This paper summarises the search for the Standard Model Higgs boson in e+e-
collisions at centre-of-mass energies up to 209 GeV performed by the OPAL
Collaboration at LEP. The consistency of the data with the background
hypothesis and various Higgs boson mass hypotheses is examined. No indication
of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained
on the mass of the Standard Model Higgs boson at the 95% CL.Comment: 51 pages, 21 figure
A study of charm production in beauty decays with the OPAL detector at LEP
Using an inclusive method, BR(b -> D\bar{D}X) has been measured in hadronic
Z^0 decays with the OPAL detector at LEP. The impact parameter significance of
tracks opposite tagged b-jets is used to differentiate b -> D\bar{D}X decays
from other decays. Using this result, the average number of charm and
anti-charm quarks produced per beauty quark decay, n_c, is determined.Comment: 20 pages, 4 figure
Search for Yukawa Production of a Light Neutral Higgs Boson at LEP
Within a Two-Higgs-Doublet Model (2HDM) a search for a light Higgs boson in
the mass range of 4-12 GeV has been performed in the Yukawa process e+e- -> b
bbar A/h -> b bbar tau+tau-, using the data collected by the OPAL detector at
LEP between 1992 and 1995 in e+e- collisions at about 91 GeV centre-of-mass
energy. A likelihood selection is applied to separate background and signal.
The number of observed events is in good agreement with the expected
background. Within a CP-conserving 2HDM type II model the cross-section for
Yukawa production depends on xiAd = |tan beta| and xihd = |sin alpha/cos beta|
for the production of the CP-odd A and the CP-even h, respectively, where tan
beta is the ratio of the vacuum expectation values of the Higgs doublets and
alpha is the mixing angle between the neutral CP-even Higgs bosons. From our
data 95% C.L. upper limits are derived for xiAd within the range of 8.5 to 13.6
and for xihd between 8.2 to 13.7, depending on the mass of the Higgs boson,
assuming a branching fraction into tau+tau- of 100%. An interpretation of the
limits within a 2HDM type II model with Standard Model particle content is
given. These results impose constraints on several models that have been
proposed to explain the recent BNL measurement of the muon anomalous magnetic
moment.Comment: 24 pages, 9 figures, Submitted to Euro. Phys. J.
- …