247 research outputs found
Quantum Diffusive Dynamics of Macromolecular Transitions
We study the role of quantum fluctuations of atomic nuclei in the real-time
dynamics of non-equilibrium macro-molecular transitions. To this goal we
introduce an extension of the Dominant Reaction Pathways (DRP) formalism, in
which the quantum corrections to the classical overdamped Langevin dynamics are
rigorously taken into account to order h^2 . We first illustrate our approach
in simple cases, and compare with the results of the instanton theory. Then we
apply our method to study the C7_eq to C7_ax transition of alanine dipeptide.
We find that the inclusion of quantum fluctuations can significantly modify the
reaction mechanism for peptides. For example, the energy difference which is
overcome along the most probable pathway is reduced by as much as 50%.Comment: Final version, to appear in the Journal of Chemical Physic
Ab-initio Dynamics of Rare Thermally Activated Reactions
We introduce a framework to investigate ab-initio the dynamics of rare
thermally activated reactions. The electronic degrees of freedom are described
at the quantum-mechanical level in the Born-Oppenheimer approximation, while
the nuclear degrees of freedom are coupled to a thermal bath, through a
Langevin equation. This method is based on the path integral representation for
the stochastic dynamics and yields the time evolution of both nuclear and
electronic degrees of freedom, along the most probable reaction pathways,
without spending computational time to explore metastable states. This approach
is very efficient and allows to study thermally activated reactions which
cannot be simulated using ab-initio molecular dynamics techniques. As a first
illustrative application, we characterize the dominant pathway in the
cyclobutene to butadiene reaction.Comment: 4 pages, 4 figure
Heavy-quarks in the QGP: study of medium effects through euclidean propagators and spectral functions
The heavy-quark spectral function in a hot plasma is reconstructed from the
corresponding euclidean propagator. The latter is evaluated through a
path-integral simulation. A weak-coupling calculation is also performed,
allowing to interpret the qualitative behavior of the spectral function in
terms of quite general physical processes.Comment: 4 pages, 3 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Quantitative Protein Dynamics from Dominant Folding Pathways
We develop a theoretical approach to the protein folding problem based on
out-of-equilibrium stochastic dynamics. Within this framework, the
computational difficulties related to the existence of large time scale gaps in
the protein folding problem are removed and simulating the entire reaction in
atomistic details using existing computers becomes feasible. In addition, this
formalism provides a natural framework to investigate the relationships between
thermodynamical and kinetic aspects of the folding. For example, it is possible
to show that, in order to have a large probability to remain unchanged under
Langevin diffusion, the native state has to be characterized by a small
conformational entropy. We discuss how to determine the most probable folding
pathway, to identify configurations representative of the transition state and
to compute the most probable transition time. We perform an illustrative
application of these ideas, studying the conformational evolution of alanine
di-peptide, within an all-atom model based on the empiric GROMOS96 force field.Comment: 4 pages, 1 figur
Gas adsorption and dynamics in Pillared Graphene Frameworks
We thank prof. Marco Frasconi for advice on the kind of moieties to be used as pillars. N.M.P. is supported by the European Research Council PoC 2015 “Silkene” No. 693670, by the European Commission H2020 under the Graphene Flagship Core 1 No. 696656 (WP14 “Polymer Nanocomposites”) and under the Fet Proactive “Neurofibres” No. 732344. S.T and G.G. acknowledge funding from previous WP14 “Polymer Nanocomposites” grant. Access to computing and storage facilities owned by parties and projects contributing to the Czech National Grid Infrastructure MetaCentrum provided under the programme “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042), is greatly appreciated (https://www.metacentrum.cz/en/)
Boltzmann bias grand canonical Monte Carlo
We derive an efficient method for the insertion of structured particles in
grand canonical Monte Carlo simulations of adsorption in very confining
geometries. We extend this method to path integral simulations and use it to
calculate the isotherm of adsorption of hydrogen isotopes in narrow carbon
nanotubes (2D confinement) and slit pores (1D confinement) at the temperatures
of 20 K and 77 K, discussing its efficiency by comparison to the standard path
integral grand canonical Monte Carlo algorithm. We use this algorithm to
perform multicomponent simulations in order to calculate the hydrogen isotope
selectivity for adsorption in narrow carbon nanotubes and slit pores at finite
pressures. The algorithm described here can be applied to the study of
adsorption of real oligomers and polymers in narrow pores and channels.Comment: 12 pages, 6 figures. Accepted for publication in The Journal of
Chemical Physic
Predictor Analysis in Radiofrequency Ablation of Benign Thyroid Nodules: A Single Center Experience
PURPOSE: To confirm the efficacy of ultrasound (US) guided radiofrequency ablation (RFA) in the treatment of benign thyroid nodules, we evaluated as primary outcome the technical efficacy and clinical success in a single center dataset. The secondary outcome was to find a correlation between nodules’ pre-treatment features and volume reduction rate (VRR) ≥75% at 12 months after RFA and during follow-up period. METHODS: This retrospective study included 119 consecutive patients (99 females, 20 males, 51.5 ± 14.4 years) with benign thyroid nodules treated in our hospital between October 2014 and December 2018 with a mean follow-up of 26.8 months (range 3–48). Clinical and US features before and after RFA were evaluated by a US examination at 1, 3, 6, 12 months and annually thereafter up to 48 months. RESULTS: The median pre-treatment volume was 22.4 ml; after RFA we observed a statistically significant volume reduction from the first month (11.7 ml) to the last follow-up (p 22.4 ml (HR 0.54, p 0.036) were found to be independent positive and negative predictors of VRR ≥75% respectively. One-month post RFA VRR ≥50% represented the best positive predictor of technical success. CONCLUSIONS: This study confirmed the efficacy of RFA in the treatment of benign thyroid nodules. In particular we show that by selecting macrocystic nodules smaller than 22.4 ml better long-term response can be achieved, which is predicted by an early shrinkage of the nodule
Thyroid ultrasonography reporting: consensus of Italian Thyroid Association (AIT), Italian Society of Endocrinology (SIE), Italian Society of Ultrasonography in Medicine and Biology (SIUMB) and Ultrasound Chapter of Italian Society of Medical Radiology (SIRM)
Thyroid ultrasonography (US) is the gold standard for thyroid imaging and its widespread use is due to an optimal spatial resolution for superficial anatomic structures, a low cost and the lack of health risks. Thyroid US is a pivotal tool for the diagnosis and follow-up of autoimmune thyroid diseases, for assessing nodule size and echostructure and defining the risk of malignancy in thyroid nodules. The main limitation of US is the poor reproducibility, due to the variable experience of the operators and the different performance and settings of the equipments. Aim of this consensus statement is to standardize the report of thyroid US through the definition of common minimum requirements and a correct terminology. US patterns of autoimmune thyroid diseases are defined. US signs of malignancy in thyroid nodules are classified and scored in each nodule. We also propose a simplified nodule risk stratification, based on the predictive value of each US sign, classified and scored according to the strength of association with malignancy, but also to the estimated reproducibility among different operators
Instantaneous Normal Mode analysis of liquid HF
We present an Instantaneous Normal Modes analysis of liquid HF aimed to
clarify the origin of peculiar dynamical properties which are supposed to stem
from the arrangement of molecules in linear hydrogen-bonded network. The
present study shows that this approach is an unique tool for the understanding
of the spectral features revealed in the analysis of both single molecule and
collective quantities. For the system under investigation we demonstrate the
relevance of hydrogen-bonding ``stretching'' and fast librational motion in the
interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text
and in a figure. Accepted for publication in Phys. Rev. Let
- …