219 research outputs found

    Dressed coordinates: the path-integrals approach

    Full text link
    The recent introduced \textit{dressed coordinates} are studied in the path-integral approach. These coordinates are defined in the context of a harmonic oscillator linearly coupled to massless scalar field and, it is shown that in this model the dressed coordinates appear as a coordinate transformation preserving the path-integral functional measure. The analysis also generalizes the \textit{sum rules} established in a previous work.Comment: 9 pages, Latex2

    A supersymmetric exotic field theory in (1+1) dimensions. One loop soliton quantum mass corrections

    Full text link
    We consider one loop quantum corrections to soliton mass for the N=1{\cal N}=1 supersymmetric extension of the (1+1)-dimensional scalar field theory with the potential U(ϕ)=ϕ2cos2(lnϕ2)U(\phi) = \phi^2 \cos^2\left(\ln \phi^2\right). First, we compute the one loop quantum soliton mass correction of the bosonic sector. To do that, we regularize implicitly such quantity by subtracting and adding its corresponding tadpole graph contribution, and use the renormalization prescription that the added term vanishes with the corresponding counterterms. As a result we get a finite unambiguous formula for the soliton quantum mass corrections up to one loop order. Afterwards, the computation for the supersymmetric case is extended straightforwardly and we obtain for the one loop quantum correction of the SUSY kink mass the expected value previously derived for the SUSY sine-Gordon and ϕ4\phi^4 models. However, we also have found that for a particular value of the parameters, contrary to what was expected, the introduction of supersymmetry in this model worsens ultraviolet divergences rather than improving them.Comment: 16 pages, 8 figures; Major modifications included to match version published in JHE

    Sum rules in the oscillator radiation processes

    Full text link
    We consider the problem of an harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution.Comment: comments and references added, LaTe

    Renormalized coordinate approach to the thermalization process

    Full text link
    We consider a particle in the harmonic approximation coupled linearly to an environment. modeled by an infinite set of harmonic oscillators. The system (particle--environment) is considered in a cavity at thermal equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time evolution of the particle occupation number. For comparison we first present this study in bare coordinates. For a long ellapsed time, in both approaches, the occupation number of the particle becomes independent of its initial value. The value of ocupation number of the particle is the physically expected one at the given temperature. So we have a Markovian process, describing the particle thermalization with the environment. With renormalized coordinates no renormalization procedure is required, leading directly to a finite result.Comment: 16 pages, LATEX, 2 figure