222 research outputs found

    Causality, delocalization and positivity of energy

    Full text link
    In a series of interesting papers G. C. Hegerfeldt has shown that quantum systems with positive energy initially localized in a finite region, immediately develop infinite tails. In our paper Hegerfeldt's theorem is analysed using quantum and classical wave packets. We show that Hegerfeldt's conclusion remains valid in classical physics. No violation of Einstein's causality is ever involved. Using only positive frequencies, complex wave packets are constructed which at t=0t = 0 are real and finitely localized and which, furthemore, are superpositions of two nonlocal wave packets. The nonlocality is initially cancelled by destructive interference. However this cancellation becomes incomplete at arbitrary times immediately afterwards. In agreement with relativity the two nonlocal wave packets move with the velocity of light, in opposite directions.Comment: 14 pages, 5 figure

    Cooperative quantum jumps for three dipole-interacting atoms

    Full text link
    We investigate the effect of the dipole-dipole interaction on the quantum jump statistics of three atoms. This is done for three-level systems in a V configuration and in what may be called a D configuration. The transition rates between the four different intensity periods are calculated in closed form. Cooperative effects are shown to increase by a factor of 2 compared to two of either three-level systems. This results in transition rates that are, for distances of about one wavelength of the strong transition, up to 100% higher than for independent systems. In addition the double and triple jump rates are calculated from the transition rates. In this case cooperative effects of up to 170% for distances of about one wavelength and still up to 15% around 10 wavelengths are found. Nevertheless, for the parameters of an experiment with Hg+ ions the effects are negligible, in agreement with the experimental data. For three Ba+ ions this seems to indicate that the large cooperative effects observed experimentally cannot be explained by the dipole-dipole interaction.Comment: 9 pages, 9 figures. Revised version, to be published in PR

    Symmetries and time operators

    Full text link
    All covariant time operators with normalized probability distribution are derived. Symmetry criteria are invoked to arrive at a unique expression for a given Hamiltonian. As an application, a well known result for the arrival time distribution of a free particle is generalized and extended. Interestingly, the resulting arrival time distribution operator is connected to a particular, positive, quantization of the classical current. For particles in a potential we also introduce and study the notion of conditional arrival-time distribution

    New classical properties of quantum coherent states

    Get PDF
    A noncommutative version of the Cramer theorem is used to show that if two quantum systems are prepared independently, and if their center of mass is found to be in a coherent state, then each of the component systems is also in a coherent state, centered around the position in phase space predicted by the classical theory. Thermal coherent states are also shown to possess properties similar to classical ones

    Discriminating between the von Neumann and L\"uders reduction rule

    Full text link
    Given an ensemble of systems in an unknown state, as well as an observable A^\hat A and a physical apparatus which performs a measurement of A^\hat A on the ensemble, whose detailed working is unknown ('black box'), how can one test whether the L\"uders or von Neumann reduction rule applies?Comment: 5 page

    Passage-time distributions from a spin-boson detector model

    Get PDF
    The passage-time distribution for a spread-out quantum particle to traverse a specific region is calculated using a detailed quantum model for the detector involved. That model, developed and investigated in earlier works, is based on the detected particle's enhancement of the coupling between a collection of spins (in a metastable state) and their environment. We treat the continuum limit of the model, under the assumption of the Markov property, and calculate the particle state immediately after the first detection. An explicit example with 15 boson modes shows excellent agreement between the discrete model and the continuum limit. Analytical expressions for the passage-time distribution as well as numerical examples are presented. The precision of the measurement scheme is estimated and its optimization discussed. For slow particles, the precision goes like E−3/4E^{-3/4}, which improves previous E−1E^{-1} estimates, obtained with a quantum clock model.Comment: 11 pages, 6 figures; minor changes, references corrected; accepted for publication in Phys. Rev.

    A wave-function Monte Carlo method for simulating conditional master equations

    Full text link
    Wave-function Monte Carlo methods are an important tool for simulating quantum systems, but the standard method cannot be used to simulate decoherence in continuously measured systems. Here we present a new Monte Carlo method for such systems. This was used to perform the simulations of a continuously measured nano-resonator in [Phys. Rev. Lett. 102, 057208 (2009)].Comment: 4 pages, revtex 4, 1 eps figure. v2: correction to Eqs (3),(9), and (11); v3 added further informatio

    Double jumps and transition rates for two dipole-interacting atoms

    Full text link
    Cooperative effects in the fluorescence of two dipole-interacting atoms, with macroscopic quantum jumps (light and dark periods), are investigated. The transition rates between different intensity periods are calculated in closed form and are used to determine the rates of double jumps between periods of double intensity and dark periods, the mean duration of the three intensity periods and the mean rate of their occurrence. We predict, to our knowledge for the first time, cooperative effects for double jumps, for atomic distances from one and to ten wave lengths of the strong transition. The double jump rate, as a function of the atomic distance, can show oscillations of up to 30% at distances of about a wave length, and oscillations are still noticeable at a distance of ten wave lengths. The cooperative effects of the quantities and their characteristic behavior turn out to be strongly dependent on the laser detuning.Comment: Substantially revised versio
    • 

    corecore