1,070 research outputs found

    Lower bound for electron spin entanglement from beamsplitter current correlations

    Full text link
    We determine a lower bound for the entanglement of pairs of electron spins injected into a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities, the zero-frequency current correlators (shot noise power or cross-correlators) after transmission through an electronic beam splitter. The effect of spin relaxation (T_1 processes) and decoherence (T_2 processes) during the ballistic coherent transmission of the carriers in the wires is taken into account within Bloch theory. The presence of a variable inhomogeneous magnetic field allows the determination of a useful lower bound for the entanglement of arbitrary entangled states. The decrease in entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source (entangler) and the relaxation (T_1) and decoherence (T_2) times can be determined.Comment: 4 pages, 3 figure

    Spin-Orbit Coupling and Time-Reversal Symmetry in Quantum Gates

    Full text link
    We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction between two single electron quantum dots. Spin-orbit coupling enters as a small spin precession when electrons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in a simple CNOT construction. Deviations from time-symmetric pulsing spoil this construction. The effect of time asymmetry is studied by numerically integrating the Schr\"odinger equation using parameters appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.Comment: 10 pages, 3 figure

    Non-adiabatic two-parameter charge and spin pumping in a quantum dot

    Full text link
    We study DC charge and spin transport through a weakly coupled quantum dot, driven by a non-adiabatic periodic change of system parameters. We generalize the model of Tien and Gordon to simultaneously oscillating voltages and tunnel couplings. When applying our general result to the two-parameter charge pumping in quantum dots, we find interference effects between the oscillations of the voltage and tunnel couplings. Furthermore, we discuss the possibility to electrically pump a spin current in presence of a static magnetic field.Comment: 4.1 pages, 4 figure

    High Resolution Valley Spectroscopy of Si Quantum Dots

    Full text link
    We study an accumulation mode Si/SiGe double quantum dot (DQD) containing a single electron that is dipole coupled to microwave photons in a superconducting cavity. Measurements of the cavity transmission reveal dispersive features due to the DQD valley states in Si. The occupation of the valley states can be increased by raising temperature or applying a finite source-drain bias across the DQD, resulting in an increased signal. Using cavity input-output theory and a four-level model of the DQD, it is possible to efficiently extract valley splittings and the inter- and intra-valley tunnel couplings

    Quantum Computation and Spin Electronics

    Full text link
    In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five criteria for the realization of a quantum computer and consider the implications that these criteria have for quantum computation using the spin states of single-electron quantum dots. Finally, we consider the transport of quantum information via the motion of individual electrons in mesoscopic structures; specific transport and noise measurements in coupled quantum dot geometries for detecting and characterizing electron-state entanglement are analyzed.Comment: 28 pages RevTeX, 4 figures. To be published in "Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics," eds. I. O. Kulik and R. Ellialtioglu (NATO Advanced Study Institute, Turkey, June 13-25, 1999

    Nuclear State Preparation via Landau-Zener-Stueckelberg transitions in Double Quantum Dots

    Full text link
    We theoretically model a nuclear-state preparation scheme that increases the coherence time of a two-spin qubit in a double quantum dot. The two-electron system is tuned repeatedly across a singlet-triplet level-anticrossing with alternating slow and rapid sweeps of an external bias voltage. Using a Landau-Zener-Stueckelberg model, we find that in addition to a small nuclear polarization that weakly affects the electron spin coherence, the slow sweeps are only partially adiabatic and lead to a weak nuclear spin measurement and a nuclear-state narrowing which prolongs the electron spin coherence. This resolves some open problems brought up by a recent experiment [D. J. Reilly et al., Science 321, 817 (2008).]. Based on our description of the weak measurement, we simulate a system with up to n=200 nuclear spins per dot. Scaling in n indicates a stronger effect for larger n.Comment: 4.1 pages, 2 figure

    Double-Occupancy Errors, Adiabaticity, and Entanglement of Spin-Qubits in Quantum Dots

    Get PDF
    Quantum gates that temporarily increase singlet-triplet splitting in order to swap electronic spins in coupled quantum dots, lead inevitably to a finite double-occupancy probability for both dots. By solving the time-dependent Schr\"odinger equation for a coupled dot model, we demonstrate that this does not necessarily lead to quantum computation errors. Instead, the coupled dot ground state evolves quasi-adiabatically for typical system parameters so that the double-occupancy probability at the completion of swapping is negligibly small. We introduce a measure of entanglement which explicitly takes into account the possibilty of double occupancies and provides a necessary and sufficient criterion for entangled states.Comment: 9 pages, 4 figures include

    African American and European American Therapists’ Experiences of Addressing Race in Cross-Racial Psychotherapy Dyads

    Get PDF
    Using Consensual Qualitative Research, 12 licensed psychologists’ overall experiences addressing race in psychotherapy were investigated, as were their experiences addressing race in a specific cross-racial therapy dyad. Results indicated that only African American psychologists reported routinely addressing race with clients of color or when race was part of a client’s presenting concern. European American psychologists indicated that they would address race if clients raised the topic, and some reported that they did not normally address race with racially different clients. When discussing a specific cross-racial dyad, African American therapists more often than European American therapists addressed race because they perceived client discomfort. Only European American therapists reported feeling uncomfortable addressing race, but therapists of both races perceived that such discussions had positive effects
    • …