247 research outputs found
A study of the ferromagnetic transition of in nanometer thick bilayers with , , Au and Cr: Signature of injected carriers in the pseudogap regime
The hypothesis regarding the existence of uncorrelated pre-formed pairs in
the pseudogap regime of superconducting is tested experimentally
using bilayers of and the itinerant ferromagnet . In
our study, we monitor the influence of on , the
ferromagnetic ordering temperature of . Here, is the temperature
of maximum dM/dT or dR/dT where M and R are the magnetization and resistance of
, respectively. We compare the results with similar measurements
carried out on bilayers of , and with
. We find that in bilayers made of underdoped 10 nm /5
nm , the values are shifted to lower temperatures by up to 6-8 K
as compared to K of the 5 nm thick reference film.
In contrast, in the other type of bilayers, which are not in the pseudogap
regime near , only a smaller shift of up to 2 K is observed. These
differences are discussed in terms of a proximity effect, where carriers from
the layer are injected into the layer and vice versa.
We suggest that correlated electrons in the pseudogap regime of
are responsible for the observed large shifts.Comment: 9 figure
Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide
The optical coupling of guided modes in a GaP waveguide to nitrogen-vacancy
(NV) centers in diamond is demonstrated. The electric field penetration into
diamond and the loss of the guided mode are measured. The results indicate that
the GaP-diamond system could be useful for realizing coupled microcavity-NV
devices for quantum information processing in diamond.Comment: 4 pages 4 figure
Classical 5D fields generated by a uniformly accelerated point source
Gauge fields associated with the manifestly covariant dynamics of particles
in spacetime are five-dimensional. In this paper we explore the old
problem of fields generated by a source undergoing hyperbolic motion in this
framework. The 5D fields are computed numerically using absolute time
-retarded Green-functions, and qualitatively compared with Maxwell fields
generated by the same motion. We find that although the zero mode of all fields
coincides with the corresponding Maxwell problem, the non-zero mode should
affect, through the Lorentz force, the observed motion of test particles.Comment: 36 pages, 8 figure
Direct writing of single germanium vacancy center arrays in diamond
© 2018 The Author(s). Color centers in diamond are promising solid-state qubits for scalable quantum photonics applications. Amongst many defects, those with inversion symmetry are of an interest due to their promising optical properties. In this work, we demonstrate a maskless implantation of an array of bright, single germanium vacancy (GeV) centers in diamond. Employing the direct focused ion beam technique, single GeV emitters are engineered with the spatial accuracy of tens of nanometers. The single GeV creation ratio reaches as high as 53% with the dose of 200 Ge + ions per spot. The presented fabrication method is promising for future nanofabrication of integrated photonic structures with GeV emitters as a leading platform for spin-spin interactions
Single photon emitters based on Ni/Si related defects in single crystalline diamond
We present investigations on single Ni/Si related color centers produced via
ion implantation into single crystalline type IIa CVD diamond. Testing
different ion dose combinations we show that there is an upper limit for both
the Ni and the Si dose 10^12/cm^2 and 10^10/cm^2 resp.) due to creation of
excess fluorescent background. We demonstrate creation of Ni/Si related centers
showing emission in the spectral range between 767nm and 775nm and narrow
line-widths of 2nm FWHM at room temperature. Measurements of the intensity
auto-correlation functions prove single-photon emission. The investigated color
centers can be coarsely divided into two groups: Drawing from photon statistics
and the degree of polarization in excitation and emission we find that some
color centers behave as two-level, single-dipole systems whereas other centers
exhibit three levels and contributions from two orthogonal dipoles. In
addition, some color centers feature stable and bright emission with saturation
count rates up to 78kcounts/s whereas others show fluctuating count rates and
three-level blinking.Comment: 7 pages, submitted to Applied Physics B, revised versio
Recommended from our members
Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing
Fabrication of devices designed to fully harness the unique properties of quantum mechanics through their coupling to quantum bits (qubits) is a prominent goal in the field of quantum information processing (QIP). Among various qubit candidates, nitrogen vacancy (NV) centers in diamond have recently emerged as an outstanding platform for room temperature QIP. However, formidable challenges still remain in processing diamond and in the fabrication of thin diamond membranes, which are necessary for planar photonic device engineering. Here we demonstrate epitaxial growth of single crystal diamond membranes using a conventional microwave chemical vapor deposition (CVD) technique. The grown membranes, only a few hundred nanometers thick, show bright luminescence, excellent Raman signature and good NV center electronic spin coherence times. Microdisk cavities fabricated from these membranes exhibit quality factors of up to 3000, overlapping with NV center emission. Our methodology offers a scalable approach for diamond device fabrication for photonics, spintronics, optomechanics and sensing applications.Engineering and Applied Science
Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN
Photoluminescence (PL) from femtosecond-laser-modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of ∼4 ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earlier in high-energy electron-irradiated and ion-implanted c-BN. These, formerly known as the radiation centers, RC1, RC2, and RC3, have been identified at the locus of the voids formed by a single femtosecond-laser pulse. The method is promising to engineer color centers in c-BN for photonic applications
Light-induced reflectivity transients in black-Si nanoneedles
© 2015 Elsevier B.V. All rights reserved. The change in reflectivity of black-Si (b-Si) upon optical excitation was measured by the pump-probe technique using picosecond laser pulses at 532 (pump) and 1064 nm (probe) wavelengths. The specular reflection from the random pattern of plasma-etched b-Si nano-needles was dominated by the photo-excited free-carrier contribution to the reflectivity. The kinetics of the reflectivity were found to be consistent with surface structural and chemical analysis, performed by scanning and transmission electron microscopy, and spectroscopic ellipsometry. The surface recombination velocity on the b-Si needles was estimated to be ~102cm/s. Metalization of b-Si led to much faster recombination and alteration of reflectivity. The reflectivity spectra of random b-Si surfaces with different needle lengths was modeled by a multi-step refractive index profile in the Drude formalism. The dip in the reflectivity spectra and the sign reversal in the differential reflectivity signal at certain b-Si needle sizes is explained by the model
Robust multicolor single photon emission from point defects in hexagonal boron nitride
© 2017 IEEE. We demonstrates engineering of quantum emitters in hBN multi-layers using either electron beam irradiation or annealing. The defects exhibit a broad range of multicolor room-temperature single photon emissions across the visible and the near-infrared ranges
- …