1,521 research outputs found

    Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

    No full text
    The objective of the study is to investigate the potential of retrieving superficial soil moisture content (m(v)) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e. g. from 100 to 10 000 km(2)). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution ( e. g. 1530 km2) by point scale hydrologic models ( or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e. g. 0.01 km(2)). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%

    Superconducting Superstructure for the TESLA Collider

    Get PDF
    We discuss the new layout of a cavity chain (superstructure) allowing, we hope, significant cost reduction of the RF system of both linacs of the TESLA linear collider. The proposed scheme increases the fill factor and thus makes an effective gradient of an accelerator higher. We present mainly computations we have performed up to now and which encouraged us to order the copper model of the scheme, still keeping in mind that experiments with a beam will be necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page

    Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2

    Full text link
    We report results of inelastic-neutron-scattering measurements of low-energy spin-wave excitations in two structurally distinct families of iron-pnictide parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different values of the ordered magnetic moment and N\'eel temperatures, T_N, in the antiferromagnetic state both compounds exhibit similar spin gaps of the order of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below T_N, with no signatures of a precursor gap at temperatures between the orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0), spin excitations in the ordered state persist down to 20 meV, which implies a much smaller value of the effective out-of-plane exchange interaction, J_c, as compared to previous estimates based on fitting the high-energy spin-wave dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl

    Momentum-dependent charge correlations in YBa2_2Cu3_3O6+δ_{6+\delta} superconductors probed by resonant x-ray scattering: Evidence for three competing phases

    Full text link
    We have used resonant x-ray scattering to determine the momentum dependent charge correlations in YBa2_2Cu3_3O6.55_{6.55} samples with highly ordered chain arrays of oxygen acceptors (ortho-II structure). The results reveal nearly critical, biaxial charge density wave (CDW) correlations at in-plane wave vectors (0.315, 0) and (0, 0.325). The corresponding scattering intensity exhibits a strong uniaxial anisotropy. The CDW amplitude and correlation length are enhanced as superconductivity is weakened by an external magnetic field. Analogous experiments were carried out on a YBa2_2Cu3_3O6.6_{6.6} crystal with a dilute concentration of spinless (Zn) impurities, which had earlier been shown to nucleate incommensurate magnetic order. Compared to pristine crystals with the same doping level, the CDW amplitude and correlation length were found to be strongly reduced. These results indicate a three-phase competition between spin-modulated, charge-modulated, and superconducting states in underdoped YBa2_2Cu3_3O6+δ_{6+\delta}.Comment: 6 pages, 3 figures revised version, to appear in Phys. Rev. Let

    Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O(6+x)

    Full text link
    There are increasing indications that superconductivity competes with other orders in cuprate superconductors, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of 3.2\bf \sim 3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba2_2Cu3_3O6+x_{6+x} with hole concentrations 0.09p0.130.09 \leq p \leq 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature, TcT_c; further cooling below TcT_c abruptly reverses the divergence of the charge correlations. In combination with prior observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge-density-wave instability that competes with superconductivity.Comment: to appear in Scienc

    The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    Get PDF
    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a distant event is rather surprising. The observed gamma-ray variability in the prompt emission together with the redshift suggests a lower limit for the Lorentz factor of the ultra-relativistic ejecta of Gamma > 1090. This value rivals any previous measurements of Gamma in GRBs and strengthens the extreme nature of GRB 080916C.Comment: 6 pages, 5 figures; subm. to A&

    SLAC/CERN high gradient tests on an X-band accelerating section

    Get PDF
    High frequency linear collider schemes envisage the use of rather high accelerating gradients: 50 to 100 MV/m for X-band and 80 MV/m for CLIC. Because these gradients are well above those commonly used in accelerators, high gradient studies of high frequency structures have been initiated and test facilities have been constructed at KEK [1], SLAC [2] and CERN [3]. The studies seek to demonstrate that the above mentioned gradients are both achievable and practical. There is no well-defined criterion for the maximum acceptable level of dark current but it must be low enough not to generate unacceptable transverse wakefields, disturb beam position monitor readings or cause RF power losses. Because there are of the order of 10,000 accelerating sections in a high frequency linear collider, the conditioning process should not be too long or difficult. The test facilities have been instrumented to allow investigation of field emission and RF breakdown mechanisms. With an understanding of these effects, the high gradient performance of accelerating sections may be improved through modifications in geometry, fabrication methods and surface finish. These high gradient test facilities also allow the ultimate performance of high frequency/short pulse length accelerating structures to be probed. This report describes the high gradient test at SLAC of an X-band accelerating section built at CERN using technology developed for CLIC
    corecore