2,603 research outputs found
Finite element analysis applied to redesign of submerged entry nozzles for steelmaking
The production of steel by continuous casting is facilitated by the use of refractory hollow-ware components. A critical component in this process is the submerged entry nozzle (SEN). The normal operating conditions of the SEN are arduous, involving large temperature gradients and exposure to mechanical forces arising from the flow of molten steel; experimental development of the components is challenging in so hazardous an environment. The effects of the thermal stress conditions in relation to a well-tried design were therefore simulated using a finite element analysis approach. It was concluded from analyses that failures of the type being experienced are caused by the large temperature gradient within the nozzle. The analyses pointed towards a supported shoulder area of the nozzle being most vulnerable to failure and practical in-service experience confirmed this. As a direct consequence of the investigation, design modifications, incorporating changes to both the internal geometry and to the nature of the intermediate support material, were implemented, thereby substantially reducing the stresses within the Al2O3/graphite ceramic liner. Industrial trials of this modified design established that the component reliability would be significantly improved and the design has now been implemented in series production
Density of kinks just after a quench in an overdamped system
A quench in an overdamped one dimensional model is studied by
analytical and numerical methods. For an infinite system or a finite system
with free boundary conditions, the density of kinks after the transition is
proportional to the eighth root of the rate of the quench. For a system with
periodic boundary conditions, it is proportional to the fourth root of the
rate. The critical exponent predicted in Zurek scenario is put in question.Comment: 4 pages in RevTex + 1 .ps fil
Recommended from our members
Report of the ANL Technical Advisory Panel on physics with polarized beams and targets
The ZGS is scheduled for shutdown in October 1979; hence, only a limited number of experiments can yet be done. The first part of this report consists of a brief discussion of recent experimental measurements at the ZGS, their implications, and recommendations for future experiments. Areas included are elastic pp and np scattering, low-energy NN scattering, and experiments at large t. An overall summary showing the various parts of the nucleon--nucleon picture is also given. The second part of the report assembles some useful pieces of nucleon--nucleon information frequently used by researchers in this field. 1 figure, 5 tables. (RWR
Defect Formation in Quench-Cooled Superfluid Phase Transition
We use neutron absorption in rotating 3He-B to heat locally a 10
micrometer-size volume into normal phase. When the heated region cools back in
microseconds, vortex lines are formed. We record with NMR the number of lines
as a function of superflow velocity and compare to the Kibble-Zurek theory of
vortex-loop freeze-out from a random network of defects. The measurements
confirm the calculated loop-size distribution and show that also the superfluid
state itself forms as a patchwork of competing A and B phase blobs. This
explains the A to B transition in supercooled neutron-irradiated 3He-A.Comment: RevTex file, 4 pages, 3 figures, resubmitted to Phys. Rev. Let
Formation of Topological Defects with Explicit Symmetry Breaking
We demonstrate a novel mechanism for the formation of topological defects in
a first order phase transition for theories in the presence of small explicit
symmetry breaking terms. We carry out numerical simulations of collisions of
two bubbles in 2+1 dimensions for a field theory where U(1) global symmetry is
spontaneously as well as explicitly broken. In the coalesced region of bubble
walls, field oscillations result in the decay of the coalesced portion in a
large number of defects (e.g. ten vortices and anti-vortices). We discuss the
implications of our results for axionic strings in the early Universe, for
baryon formation in quark-gluon plasma, and for electric or magnetic field.Comment: Latex file, 8 pages, 6 uuencoded postscript figure
An exploration of parents’ preferences for foot care in juvenile idiopathic arthritis: a possible role for the discrete choice experiment
Background:
An increased awareness of patients’ and parents’ care preferences regarding foot care is desirable from a clinical perspective as such information may be utilised to optimise care delivery. The aim of this study was to examine parents’ preferences for, and valuations of foot care and foot-related outcomes in juvenile idiopathic arthritis (JIA).<p></p>
Methods:
A discrete choice experiment (DCE) incorporating willingness-to-pay (WTP) questions was conducted by surveying 42 parents of children with JIA who were enrolled in a randomised-controlled trial of multidisciplinary foot care at a single UK paediatric rheumatology outpatients department. Attributes explored were: levels of pain; mobility; ability to perform activities of daily living (ADL); waiting time; referral route; and footwear. The DCE was administered at trial baseline. DCE data were analysed using a multinomial-logit-regression model to estimate preferences and relative importance of attributes of foot care. A stated-preference WTP question was presented to estimate parents’ monetary valuation of health and service improvements.<p></p>
Results:
Every attribute in the DCE was statistically significant (p < 0.01) except that of cost (p = 0.118), suggesting that all attributes, except cost, have an impact on parents’ preferences for foot care for their child. The magnitudes of the coefficients indicate that the strength of preference for each attribute was (in descending order): improved ability to perform ADL, reductions in foot pain, improved mobility, improved ability to wear desired footwear, multidisciplinary foot care route, and reduced waiting time. Parents’ estimated mean annual WTP for a multidisciplinary foot care service was £1,119.05.<p></p>
Conclusions:
In terms of foot care service provision for children with JIA, parents appear to prefer improvements in health outcomes over non-health outcomes and service process attributes. Cost was relatively less important than other attributes suggesting that it does not appear to impact on parents’ preferences.<p></p>
Dynamics of defect formation
A dynamic symmetry-breaking transition with noise and inertia is analyzed.
Exact solution of the linearized equation that describes the critical region
allows precise calculation (exponent and prefactor) of the number of defects
produced as a function of the rate of increase of the critical parameter. The
procedure is valid in both the overdamped and underdamped limits. In one space
dimension, we perform quantitative comparison with numerical simulations of the
nonlinear nonautonomous stochastic partial differential equation and report on
signatures of underdamped dynamics.Comment: 4 pages, LaTeX, 4 figures. Submitted to Physical Revie
Observation of Crossover from Ballistic to Diffusion Regime for Excimer Molecules in Superfluid He
We have measured the temperature dependence of the time of flight of helium
excimer molecules He2* in superfluid 4He and find that the molecules behave
ballistically below 100mK and exhibit Brownian motion above 200 mK. In the
intermediate temperature range the transport cannot be described by either of
the models.Comment: 8 pages, 6 figures, submitted to the Proceedings of the International
Conference on Quantum Fluids and Solids 201
Density of Bloch Waves after a Quench
Production of Bloch waves during a rapid quench is studied by analytical and
numerical methods. The density of Bloch waves decays exponentially with the
quench time. It also strongly depends on temperature. Very few textures are
produced for temperatures lower than a characteristic temperature proportional
to the square of the magnetic field.Comment: 4 pages in RevTex + 3 .ps files; improved presentation; version to
appear in PR
Unraveling critical dynamics: The formation and evolution of topological textures
We study the formation of topological textures in a nonequilibrium phase
transition of an overdamped classical O(3) model in 2+1 dimensions. The phase
transition is triggered through an external, time-dependent effective mass,
parameterized by quench timescale \tau. When measured near the end of the
transition the texture separation and the texture width scale respectively as
\tau^(0.39 \pm 0.02) and \tau^(0.46 \pm 0.04), significantly larger than
\tau^(0.25) predicted from the Kibble-Zurek mechanism. We show that
Kibble-Zurek scaling is recovered at very early times but that by the end of
the transition the power-laws result instead from a competition between the
length scale determined at freeze-out and the ordering dynamics of a textured
system. In the context of phase ordering these results suggest that the
multiple length scales characteristic of the late-time ordering of a textured
system derive from the critical dynamics of a single nonequilibrium correlation
length. In the context of defect formation these results imply that significant
evolution of the defect network can occur before the end of the phase
transition. Therefore a quantitative understanding of the defect network at the
end of the phase transition generally requires an understanding of both
critical dynamics and the interactions among topological defects.Comment: 12 pages, revtex, 9 figures in eps forma
- …