575 research outputs found

    Analytical Formulas of Molecular Ion Abundances and N2H+ Ring in Protoplanetary Disks

    Get PDF
    We investigate the chemistry of ion molecules in protoplanetary disks, motivated by the detection of N2_2H+^+ ring around TW Hya. While the ring inner radius coincides with the CO snow line, it is not apparent why N2_2H+^+ is abundant outside the CO snow line in spite of the similar sublimation temperatures of CO and N2_2. Using the full gas-grain network model, we reproduced the N2_2H+^+ ring in a disk model with millimeter grains. The chemical conversion of CO and N2_2 to less volatile species (sink effect hereinafter) is found to affect the N2_2H+^+ distribution. Since the efficiency of the sink depends on various parameters such as activation barriers of grain surface reactions, which are not well constrained, we also constructed the no-sink model; the total (gas and ice) CO and N2_2 abundances are set constant, and their gaseous abundances are given by the balance between adsorption and desorption. Abundances of molecular ions in the no-sink model are calculated by analytical formulas, which are derived by analyzing the full-network model. The N2_2H+^+ ring is reproduced by the no-sink model, as well. The 2D (R-Z) distribution of N2_2H+^+, however, is different among the full-network model and no-sink model. The column density of N2_2H+^+ in the no-sink model depends sensitively on the desorption rate of CO and N2_2, and the flux of cosmic ray. We also found that N2_2H+^+ abundance can peak at the temperature slightly below the CO sublimation, even if the desorption energies of CO and N2_2 are the same.Comment: accepted to Ap

    Multiple paths of deuterium fractionation in protoplanetary disks

    Full text link
    We investigate deuterium chemistry coupled with the nuclear spin-state chemistry of H2_2 and H3+_3^+ in protoplanetary disks. Multiple paths of deuterium fractionation are found; exchange reactions with D atoms, such as HCO+^+ + D, are effective in addition to those with HD. In a disk model with grain sizes appropriate for dark clouds, the freeze-out of molecules is severe in the outer midplane, while the disk surface is shielded from UV radiation. Gaseous molecules, including DCO+^+, thus become abundant at the disk surface, which tends to make their column density distribution relatively flat. If the dust grains have grown to millimeter size, the freeze-out rate of neutral species is reduced, and the abundances of gaseous molecules, including DCO+^+ and N2_2D+^+, are enhanced in the cold midplane. Turbulent diffusion transports D atoms and radicals at the disk surface to the midplane, and stable ice species in the midplane to the disk surface. The effects of turbulence on chemistry are thus multifold; while DCO+^+ and N2_2D+^+ abundances increase or decrease depending on the regions, HCN and DCN in the gas and ice are much reduced at the innermost radii, compared with the model without turbulence. When cosmic rays penetrate the disk, the ortho-to-para ratio (OPR) of H2_2 is found to be thermal in the disk, except in the cold (10\lesssim 10 K) midplane. We also analyze the OPR of H3+_3^+ and H2_2D+^+, as well as the main reactions of H2_2D+^+, DCO+^+, and N2_2D+^+ to analytically derive their abundances in the cold midplane.Comment: accepted to Ap

    Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration

    Get PDF
    Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen, molecular nitrogen (N2), and icy N-bearing molecules, such as ammonia (NH3) and N2. Atomic nitrogen is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of atomic nitrogen in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of VLA and ALMA observations with reasonable integration times, at least toward IRAS 16293-2422 where high molecular column densities are expected.Comment: Accepted for publication in MNRAS, 12 pages, 9 figures, 1 Tabl

    Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration

    Get PDF
    Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N i), molecular nitrogen (N2), and icy N-bearing molecules, such as NH3 and N2. N i is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of N i in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND2H/NH2D]/[NH2D/NH3] ratio. Using gas–ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND2H/NH2D]/[NH2D/NH3] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearing molecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed. We conclude that the [ND2H/NH2D]/[NH2D/NH3] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/submillimeter Array observations with reasonable integration times, at least towards IRAS 16293−2422, where high molecular column densities are expected

    Deep Search for Phosphine in a Prestellar Core

    Full text link
    Understanding in which chemical forms phosphorus exists in star- and planet-forming regions and how phosphorus is delivered to planets are of great interest from the viewpoint of the origin of life on Earth. Phosphine (PH3) is thought to be a key species to understanding phosphorus chemistry, but never has been detected in star- and planet-forming regions. We performed sensitive observations of the ortho-PH3 10001_0-0_0 transition (266.944 GHz) toward the low-mass prestellar core L1544 with the ACA stand-alone mode of ALMA. The line was not detected down to 3σ\sigma levels in 0.07 km s1^{-1} channels of 18 mK. The non-detection provides the upper limit to the gas-phase PH3 abundance of 5×10125\times10^{-12} with respect to H2 in the central part of the core. Based on the gas-ice astrochemical modeling, we find the scaling relationship between the gas-phase PH3 abundance and the volatile (gas and ice with larger volatility than water) P elemental abundance for given physical conditions. This characteristic and well-constrained physical properties of L1544 allow us to constrain the upper limit to the volatile P elemental abundance of 5×1095\times10^{-9}, which is a factor of 60 lower than the overall P abundance in the ISM. Then the majority of P should exist in refractory forms. The volatile P elemental abundance of L1544 is smaller than that in the coma of comet 67P/C-G, implying that the conversion of refractory phosphorus to volatile phosphorus could have occurred along the trail from the presolar core to the protosolar disk through e.g., sputtering by accretion/outflow shocks.Comment: 10 pages, 4 figures, 1 Table, accepted for publication in ApJ

    ALMA Observations of the IRDC Clump G34.43+00.24 MM3: DNC/HNC Ratio

    Get PDF
    We have observed the clump G34.43+00.24 MM3 associated with an infrared dark cloud in DNC JJ=3--2, HN13^{13}C JJ=3--2, and N2_2H+^+ JJ=3--2 with the Atacama Large Millimeter/submillimeter Array (ALMA). The N2_2H+^+ emission is found to be relatively weak near the hot core and the outflows, and its distribution is clearly anti-correlated with the CS emission. This result indicates that a young outflow is interacting with cold ambient gas. The HN13^{13}C emission is compact and mostly emanates from the hot core, whereas the DNC emission is extended around the hot core. Thus, the DNC and HN13^{13}C emission traces warm regions near the protostar differently. The DNC emission is stronger than the HN13^{13}C emission toward most parts of this clump. The DNC/HNC abundance ratio averaged within a 15×1515^{\prime\prime} \times 15^{\prime\prime} area around the phase center is higher than 0.06. This ratio is much higher than the value obtained by the previous single-dish observations of DNC and HN13^{13}C JJ=1--0 (\sim0.003). It seems likely that the DNC and HNC emission observed with the single-dish telescope traces lower density envelopes, while that observed with ALMA traces higher density and highly deuterated regions. We have compared the observational results with chemical-model results in order to investigate the behavior of DNC and HNC in the dense cores. Taking these results into account, we suggest that the low DNC/HNC ratio in the high-mass sources obtained by the single-dish observations are at least partly due to the low filling factor of the high density regions.Comment: accepted to Ap
    corecore