100 research outputs found

    Development of a Comprehensive Sequencing Assay for Inherited Cardiac Condition Genes

    Full text link

    Development and Validation of Targeted Next-Generation Sequencing Panels for Detection of Germline Variants in Inherited Diseases.

    Get PDF
    Context.-The number of targeted next-generation sequencing (NGS) panels for genetic diseases offered by clinical laboratories is rapidly increasing. Before an NGS-based test is implemented in a clinical laboratory, appropriate validation studies are needed to determine the performance characteristics of the test. Objective.-To provide examples of assay design and validation of targeted NGS gene panels for the detection of germline variants associated with inherited disorders. Data Sources.-The approaches used by 2 clinical laboratories for the development and validation of targeted NGS gene panels are described. Important design and validation considerations are examined. Conclusions.-Clinical laboratories must validate performance specifications of each test prior to implementation. Test design specifications and validation data are provided, outlining important steps in validation of targeted NGS panels by clinical diagnostic laboratories

    Alcama mediates Edn1 signaling during zebrafish cartilage morphogenesis

    Get PDF
    The zebrafish pharyngeal cartilage is derived from the pharyngeal apparatus, a vertebrate-specific structure derived from all three germ layers. Developmental aberrations of the pharyngeal apparatus lead to birth defects such as Treacher-Collins and DiGeorge syndromes. While interactions between endoderm and neural crest (NC) are known to be important for cartilage formation, the full complement of molecular players involved and their roles remain to be elucidated. Activated leukocyte cell adhesion molecule a (alcama), a member of the immunoglobulin (Ig) superfamily, is among the prominent markers of pharyngeal pouch endoderm, but to date no role has been assigned to this adhesion molecule in the development of the pharyngeal apparatus. Here we show that alcama plays a crucial, non-autonomous role in pharyngeal endoderm during zebrafish cartilage morphogenesis. alcama knockdown leads to defects in NC differentiation, without affecting NC specification or migration. These defects are reminiscent of the phenotypes observed when Endothelin 1 (Edn1) signaling, a key regulator of cartilage development is disrupted. Using gene expression analysis and rescue experiments we show that Alcama functions downstream of Edn1 signaling to regulate NC differentiation and cartilage morphogenesis. In addition, we also identify a role for neural adhesion molecule 1.1 (nadl1.1), a known interacting partner of Alcama expressed in neural crest, in NC differentiation. Our data shows that nadl1.1 is required for alcama rescue of NC differentiation in edn1(-/-) mutants and that Alcama interacts with Nadl1.1 during chondrogenesis. Collectively our results support a model by which Alcama on the endoderm interacts with Nadl1.1 on NC to mediate Edn1 signaling and NC differentiation during chondrogenesis

    A Gender-Moderated Effect of a Functional COMT Polymorphism on Prefrontal Brain Morphology and Function in Velo-Cardio-Facial Syndrome (22q11.2 Deletion Syndrome)

    Get PDF
    Caused by a microdeletion at the q11.2 locus of chromosome 22, velo-cardio-facial syndrome (also known as VCFS, 22q11 deletion syndrome, DiGeorge sequence, and conotruncal anomalies face syndrome) is associated with a distinctive physical, neurocognitive, and psychiatric phenotype. Increasing interest has centered on identifying the candidate genes within the deleted region that may contribute to this phenotype. One attractive candidate gene is catechol-O-methyltransferase (COMT) because it encodes for a protein that degrades dopamine. Variability in COMT activity is related to a Val158Met polymorphism that has been implicated in prefrontal lobe cognitive and neuropsychiatric function. We examined the effect of this polymorphism on prefrontal anatomy and frontally-mediated neuropsychological function in 58 children with VCFS, 26 who were hemizygous for the Met allele and 32 for the Val allele. We found an allele by gender interaction effect on the volumes of the dorsal prefrontal and orbital prefrontal cortices. We did not find significant allele or gender by allele effects on neuropsychological tasks, although girls with the Met allele tended to perform better on the Wisconsin card sorting task. These data suggest that this functional COMT polymorphism may play a gender-moderated role in determining the neuroanatomic phenotype of individuals with VCFS. Longitudinal evaluation of these children is essential in order to identify potential clinical implications of this allele by gender interaction

    The CHC22 Clathrin-GLUT4 Transport Pathway Contributes to Skeletal Muscle Regeneration

    Get PDF
    Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans

    College of American Pathologists\u27 Laboratory Standards for Next-Generation Sequencing Clinical Tests

    Get PDF
    Context.-The higher throughput and lower per-base cost of next-generation sequencing (NGS) as compared to Sanger sequencing has led to its rapid adoption in clinical testing. The number of laboratories offering NGS-based tests has also grown considerably in the past few years, despite the fact that specific Clinical Laboratory Improvement Amendments of 1988/College of American Pathologists (CAP) laboratory standards had not yet been developed to regulate this technology. Objective.-To develop a checklist for clinical testing using NGS technology that sets standards for the analytic wet bench process and for bioinformatics or \u27\u27 dry bench\u27\u27 analyses. As NGS-based clinical tests are new to diagnostic testing and are of much greater complexity than traditional Sanger sequencing-based tests, there is an urgent need to develop new regulatory standards for laboratories offering these tests. Design.-To develop the necessary regulatory framework for NGS and to facilitate appropriate adoption of this technology for clinical testing, CAP formed a committee in 2011, the NGS Work Group, to deliberate upon the contents to be included in the checklist. Results.-A total of 18 laboratory accreditation checklist requirements for the analytic wet bench process and bioinformatics analysis processes have been included within CAP\u27s molecular pathology checklist (MOL). Conclusions.-This report describes the important issues considered by the CAP committee during the development of the new checklist requirements, which address documentation, validation, quality assurance, confirmatory testing, exception logs, monitoring of upgrades, variant interpretation and reporting, incidental findings, data storage, version traceability, and data transfer confidentiality

    ACMG clinical laboratory standards for next-generation sequencing

    Get PDF
    Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual's near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines
    corecore