2,059 research outputs found

    Enantioselective Synthesis of 5-epi-Citreoviral Using Ruthenium-Catalyzed Asymmetric Ring-Closing Metathesis

    Get PDF
    Chiral ruthenium olefin metathesis catalysts can perform asymmetric ring-closing reactions in ≥90% ee with low catalyst loadings. To illustrate the practicality of these reactions and the products they form, an enantioselective total synthesis of 5-epi-citreoviral was completed by using an asymmetric ring-closing olefin metathesis reaction as a key step early in the synthesis. All of the stereocenters in the final compound were set by using the chiral center generated by asymmetric olefin metathesis

    Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    Get PDF
    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) are reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3−5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a−4a (to form 2b−4b in situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed

    A Standard System of Characterization for Olefin Metathesis Catalysts

    Get PDF
    The success of olefin metathesis has spurred the intense investigation of new catalysts for this transformation. With the development of many different catalysts, however, it becomes increasingly difficult to compare their efficiencies. In this article we introduce a set of six reactions with specific reaction conditions to establish a standard for catalyst comparison in olefin metathesis. The reactions were selected on the basis of their ability to provide a maximum amount of information describing catalyst activity, stability, and selectivity, while being operationally simple. Seven of the most widely used ruthenium-based olefin metathesis catalysts were evaluated with these standard screens. This standard is a useful tool for the comparison and evaluation of new metathesis catalysts

    Synthesis and Catalytic Activity of (3,4-Diphenylcyclopentadienone)Iron Tricarbonyl Compounds in Transfer Hydrogenations and Dehydrogenations

    Full text link
    Four (3,4-diphenylcyclopentadienone)iron tricarbonyl compounds were synthesized, and their activities in transfer hydrogenations of carbonyl compounds and transfer dehydrogenations of alcohols were explored and compared to those of the well-established [2,5-(SiMe3)2-3,4-(CH2)4(η4-C4C═O)]Fe(CO)3 (3). A new compound, [2,5-bis(3,5-dimethylphenyl)-3,4-diphenylcyclopentadienone]iron tricarbonyl (7), was the most active catalyst in both transfer hydrogenations and dehydrogenations, and compound 3 was the least active catalyst in transfer hydrogenations. Evidence was found for product inhibition of both 3 and 7 in a transfer dehydrogenation reaction, with the activity of 3 being more heavily affected. A monomeric iron hydride derived from 7 was spectroscopically observed during a transfer hydrogenation, and no diiron bridging hydrides were found under reductive or oxidative conditions. Initial results in the transfer hydrogenation of N-benzylideneaniline showed that 3 was a significantly less active catalyst in comparison to the (3,4-diphenylcyclopentadienone)iron tricarbonyl compounds

    (Cyclopentadienone)iron-Catalyzed Transfer Dehydrogenation of Symmetrical and Unsymmetrical Diols to Lactones

    Full text link
    Air-stable iron carbonyl compounds bearing cyclopentadienone ligands with varying substitution were explored as catalysts in dehydrogenative diol lactonization reactions using acetone as both the solvent and hydrogen acceptor. Two catalysts with trimethylsilyl groups in the 2- and 5-positions, [2,5-(SiMe3)2-3,4-(CH2)4(η4-C4C═O)]Fe(CO)3 (1) and [2,5-(SiMe3)2-3,4-(CH2)3(η4-C4C═O)]Fe(CO)3 (2), were found to be the most active, with 2 being the most selective in the lactonization of diols containing both primary and secondary alcohols. Lactones containing five-, six-, and seven-membered rings were successfully synthesized, and no over-oxidations to carboxylic acids were detected. The lactonization of unsymmetrical diols containing two primary alcohols occurred with catalyst 1, but selectivity was low based on alcohol electronics and modest based on alcohol sterics. Evidence for a transfer dehydrogenation mechanism was found, and insight into the origin of selectivity in the lactonization of 1°/2° diols was obtained. Additionally, spectroscopic evidence for a trimethylamine-ligated iron species formed in solution during the reaction was discovered

    Early dynamics of transmission and control of COVID-19: a mathematical modelling study.

    Get PDF
    BACKGROUND: An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. METHODS: We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. FINDINGS: We estimated that the median daily reproduction number (Rt) in Wuhan declined from 2·35 (95% CI 1·15-4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41-2·39) 1 week after. Based on our estimates of Rt, assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. INTERPRETATION: Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually. FUNDING: Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research

    Ruthenium-Catalyzed Ring-Closing Metathesis to Form Tetrasubstituted Olefins

    Get PDF
    Increased efficiency for ring-closing metathesis to form tetrasubstituted olefins using N-heterocyclic carbene ligated ruthenium catalysts was achieved by reducing the size of the substituents at the ortho positions of the N-bound aryl rings

    Temporal Changes in Ebola Transmission in Sierra Leone and Implications for Control Requirements: a Real-time Modelling Study.

    Get PDF
    BACKGROUND: Between August and November 2014, the incidence of Ebola virus disease (EVD) rose dramatically in several districts of Sierra Leone. As a result, the number of cases exceeded the capacity of Ebola holding and treatment centres. During December, additional beds were introduced, and incidence declined in many areas. We aimed to measure patterns of transmission in different regions, and evaluate whether bed capacity is now sufficient to meet future demand. METHODS: We used a mathematical model of EVD infection to estimate how the extent of transmission in the nine worst affected districts of Sierra Leone changed between 10th August 2014 and 18th January 2015. Using the model, we forecast the number of cases that could occur until the end of March 2015, and compared bed requirements with expected future capacity. RESULTS: We found that the reproduction number, R, defined as the average number of secondary cases generated by a typical infectious individual, declined between August and December in all districts. We estimated that R was near the crucial control threshold value of 1 in December. We further estimated that bed capacity has lagged behind demand between August and December for most districts, but as a consequence of the decline in transmission, control measures caught up with the epidemic in early 2015. CONCLUSIONS: EVD incidence has exhibited substantial temporal and geographical variation in Sierra Leone, but our results suggest that the epidemic may have now peaked in Sierra Leone, and that current bed capacity appears to be sufficient to keep the epidemic under-control in most districts
    corecore