898 research outputs found

    Hopf algebras and finite tensor categories in conformal field theory

    Full text link
    In conformal field theory the understanding of correlation functions can be divided into two distinct conceptual levels: The analytic properties of the correlators endow the representation categories of the underlying chiral symmetry algebras with additional structure, which in suitable cases is the one of a finite tensor category. The problem of specifying the correlators can then be encoded in algebraic structure internal to those categories. After reviewing results for conformal field theories for which these representation categories are semisimple, we explain what is known about representation categories of chiral symmetry algebras that are not semisimple. We focus on generalizations of the Verlinde formula, for which certain finite-dimensional complex Hopf algebras are used as a tool, and on the structural importance of the presence of a Hopf algebra internal to finite tensor categories.Comment: 46 pages, several figures. v2: missing text added after (4.5), references added, and a few minor changes. v3: typos corrected, bibliography update

    Categorification and correlation functions in conformal field theory

    Full text link
    A modular tensor category provides the appropriate data for the construction of a three-dimensional topological field theory. We describe the following analogue for two-dimensional conformal field theories: a 2-category whose objects are symmetric special Frobenius algebras in a modular tensor category and whose morphisms are categories of bimodules. This 2-category provides sufficient ingredients for constructing all correlation functions of a two-dimensional rational conformal field theory. The bimodules have the physical interpretation of chiral data, boundary conditions, and topological defect lines of this theory.Comment: 16 pages, Invited contribution to the ICM 200

    Topological and conformal field theory as Frobenius algebras

    Full text link
    Two-dimensional conformal field theory (CFT) can be defined through its correlation functions. These must satisfy certain consistency conditions which arise from the cutting of world sheets along circles or intervals. The construction of a (rational) CFT can be divided into two steps, of which one is complex-analytic and one purely algebraic. We realise the algebraic part of the construction with the help of three-dimensional topological field theory and show that any symmetric special Frobenius algebra in the appropriate braided monoidal category gives rise to a solution. A special class of examples is provided by two-dimensional topological field theories, for which the relevant monoidal category is the category of vector spaces.Comment: 23 pages, several figures, proceedings to the Streetfest (Canberra 07/2005); v2: section 2.4 expanded, version accepted for publication in Contemp. Mat
    corecore