39,584 research outputs found
The Effect of Apprendi v. New Jersey on the Federal Sentencing Guidelines: Blurring the Distinction between Sentencing Factors and Elements of a Crime
Simple Current Actions of Cyclic Groups
Permutation actions of simple currents on the primaries of a Rational
Conformal Field Theory are considered in the framework of admissible weighted
permutation actions. The solution of admissibility conditions is presented for
cyclic quadratic groups: an irreducible WPA corresponds to each subgroup of the
quadratic group. As a consequence, the primaries of a RCFT with an order n
integral or half-integral spin simple current may be arranged into multiplets
of length k^2 (where k is a divisor of n) or 3k^2 if the spin of the simple
current is half-integral and k is odd.Comment: Added reference, minor change
Symmetry breaking boundaries II. More structures; examples
Various structural properties of the space of symmetry breaking boundary
conditions that preserve an orbifold subalgebra are established. To each such
boundary condition we associate its automorphism type. It is shown that
correlation functions in the presence of such boundary conditions are
expressible in terms of twisted boundary blocks which obey twisted Ward
identities. The subset of boundary conditions that share the same automorphism
type is controlled by a classifying algebra, whose structure constants are
shown to be traces on spaces of chiral blocks. T-duality on boundary conditions
is not a one-to-one map in general. These structures are illustrated in a
number of examples. Several applications, including the construction of non-BPS
boundary conditions in string theory, are exhibited.Comment: 51 pages, LaTeX2
The action of outer automorphisms on bundles of chiral blocks
On the bundles of WZW chiral blocks over the moduli space of a punctured
rational curve we construct isomorphisms that implement the action of outer
automorphisms of the underlying affine Lie algebra. These bundle-isomorphisms
respect the Knizhnik-Zamolodchikov connection and have finite order. When all
primary fields are fixed points, the isomorphisms are endomorphisms; in this
case, the bundle of chiral blocks is typically a reducible vector bundle. A
conjecture for the trace of such endomorphisms is presented; the proposed
relation generalizes the Verlinde formula. Our results have applications to
conformal field theories based on non-simply connected groups and to the
classification of boundary conditions in such theories.Comment: 46 pages, LaTeX2e. Final version (Commun.Math.Phys., in press). We
have implemented the fact that the group of automorphisms in general acts
only projectively on the chiral blocks and corrected some typo
D-brane conformal field theory
We outline the structure of boundary conditions in conformal field theory. A
boundary condition is specified by a consistent collection of reflection
coefficients for bulk fields on the disk together with a choice of an
automorphism \omega of the fusion rules that preserves conformal weights.
Non-trivial automorphisms \omega correspond to D-brane configurations for
arbitrary conformal field theories.Comment: 7 pages, LaTeX2e. Slightly extended version of a talk given by J.
Fuchs at the 31st International Symposium Ahrenshoop on the Theory of
Elementary Particles, Buckow, Germany, September 199
- …