576 research outputs found
Modeling Brain Circuitry over a Wide Range of Scales
If we are ever to unravel the mysteries of brain function at its most
fundamental level, we will need a precise understanding of how its component
neurons connect to each other. Electron Microscopes (EM) can now provide the
nanometer resolution that is needed to image synapses, and therefore
connections, while Light Microscopes (LM) see at the micrometer resolution
required to model the 3D structure of the dendritic network. Since both the
topology and the connection strength are integral parts of the brain's wiring
diagram, being able to combine these two modalities is critically important.
In fact, these microscopes now routinely produce high-resolution imagery in
such large quantities that the bottleneck becomes automated processing and
interpretation, which is needed for such data to be exploited to its full
potential. In this paper, we briefly review the Computer Vision techniques we
have developed at EPFL to address this need. They include delineating dendritic
arbors from LM imagery, segmenting organelles from EM, and combining the two
into a consistent representation
Beyond KernelBoost
In this Technical Report we propose a set of improvements with respect to the
KernelBoost classifier presented in [Becker et al., MICCAI 2013]. We start with
a scheme inspired by Auto-Context, but that is suitable in situations where the
lack of large training sets poses a potential problem of overfitting. The aim
is to capture the interactions between neighboring image pixels to better
regularize the boundaries of segmented regions. As in Auto-Context [Tu et al.,
PAMI 2009] the segmentation process is iterative and, at each iteration, the
segmentation results for the previous iterations are taken into account in
conjunction with the image itself. However, unlike in [Tu et al., PAMI 2009],
we organize our recursion so that the classifiers can progressively focus on
difficult-to-classify locations. This lets us exploit the power of the
decision-tree paradigm while avoiding over-fitting. In the context of this
architecture, KernelBoost represents a powerful building block due to its
ability to learn on the score maps coming from previous iterations. We first
introduce two important mechanisms to empower the KernelBoost classifier,
namely pooling and the clustering of positive samples based on the appearance
of the corresponding ground-truth. These operations significantly contribute to
increase the effectiveness of the system on biomedical images, where texture
plays a major role in the recognition of the different image components. We
then present some other techniques that can be easily integrated in the
KernelBoost framework to further improve the accuracy of the final
segmentation. We show extensive results on different medical image datasets,
including some multi-label tasks, on which our method is shown to outperform
state-of-the-art approaches. The resulting segmentations display high accuracy,
neat contours, and reduced noise
On Rendering Synthetic Images for Training an Object Detector
We propose a novel approach to synthesizing images that are effective for
training object detectors. Starting from a small set of real images, our
algorithm estimates the rendering parameters required to synthesize similar
images given a coarse 3D model of the target object. These parameters can then
be reused to generate an unlimited number of training images of the object of
interest in arbitrary 3D poses, which can then be used to increase
classification performances.
A key insight of our approach is that the synthetically generated images
should be similar to real images, not in terms of image quality, but rather in
terms of features used during the detector training. We show in the context of
drone, plane, and car detection that using such synthetically generated images
yields significantly better performances than simply perturbing real images or
even synthesizing images in such way that they look very realistic, as is often
done when only limited amounts of training data are available
Introducing Geometry in Active Learning for Image Segmentation
We propose an Active Learning approach to training a segmentation classifier
that exploits geometric priors to streamline the annotation process in 3D image
volumes. To this end, we use these priors not only to select voxels most in
need of annotation but to guarantee that they lie on 2D planar patch, which
makes it much easier to annotate than if they were randomly distributed in the
volume. A simplified version of this approach is effective in natural 2D
images. We evaluated our approach on Electron Microscopy and Magnetic Resonance
image volumes, as well as on natural images. Comparing our approach against
several accepted baselines demonstrates a marked performance increase
Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection
People detection in single 2D images has improved greatly in recent years.
However, comparatively little of this progress has percolated into multi-camera
multi-people tracking algorithms, whose performance still degrades severely
when scenes become very crowded. In this work, we introduce a new architecture
that combines Convolutional Neural Nets and Conditional Random Fields to
explicitly model those ambiguities. One of its key ingredients are high-order
CRF terms that model potential occlusions and give our approach its robustness
even when many people are present. Our model is trained end-to-end and we show
that it outperforms several state-of-art algorithms on challenging scenes
Learning to Reconstruct Texture-less Deformable Surfaces from a Single View
Recent years have seen the development of mature solutions for reconstructing
deformable surfaces from a single image, provided that they are relatively
well-textured. By contrast, recovering the 3D shape of texture-less surfaces
remains an open problem, and essentially relates to Shape-from-Shading. In this
paper, we introduce a data-driven approach to this problem. We introduce a
general framework that can predict diverse 3D representations, such as meshes,
normals, and depth maps. Our experiments show that meshes are ill-suited to
handle texture-less 3D reconstruction in our context. Furthermore, we
demonstrate that our approach generalizes well to unseen objects, and that it
yields higher-quality reconstructions than a state-of-the-art SfS technique,
particularly in terms of normal estimates. Our reconstructions accurately model
the fine details of the surfaces, such as the creases of a T-Shirt worn by a
person.Comment: Accepted to 3DV 201
- …