13,042 research outputs found
Flight measurements of hinged-plate wing-spoiler hinge moments
Hinge moment of hinged-plate wing spoilers were measured during flight of a twin turboprop airplane modified by the addition of upper and lower wing-surface spoilers. The spoiler-actuating hydraulic cylinders were instrumented to measure the forces required to extend the spoiler panels. Those measurements were converted to moment coefficient form, and are presented as a function of spoiler deployment angle. The hinge-moment data were collected at three flight conditions: with flaps extended at approach speed; with flaps retracted at a low speed; and with flaps retracted at a high speed (C sub L = 1.4, 1.0, and 0.5). In general, the magnitude of measured spoiler hinge moments were lower than predicted. Furthermore, for upper surface spoilers with flaps extended, the hinge moments increased in a discontinuous manner between spoiler deflection 10 and 10
Fermion Determinants: Some Recent Analytic Results
The use of known analytic results for the continuum fermion determinants in
QCD and QED as benchmarks for zero lattice spacing extrapolations of lattice
fermion determinants is proposed. Specifically, they can be used as a check on
the universality hypothesis relating the continuum limits of the na\"{\i}ve,
staggered and Wilson fermion determinants.Comment: 8th Workshop on Non-Perturbative QCD, 7-11 June 2004, Pari
Scene-Dependency of Spatial Image Quality Metrics
This thesis is concerned with the measurement of spatial imaging performance and the modelling of spatial image quality in digital capturing systems. Spatial imaging performance and image quality relate to the objective and subjective reproduction of luminance contrast signals by the system, respectively; they are critical to overall perceived image quality.
The Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS) describe the signal (contrast) transfer and noise characteristics of a system, respectively, with respect to spatial frequency. They are both, strictly speaking, only applicable to linear systems since they are founded upon linear system theory. Many contemporary capture systems use adaptive image signal processing, such as denoising and sharpening, to optimise output image quality. These non-linear processes change their behaviour according to characteristics of the input signal (i.e. the scene being captured). This behaviour renders system performance “scene-dependent” and difficult to measure accurately. The MTF and NPS are traditionally measured from test charts containing suitable predefined signals (e.g. edges, sinusoidal exposures, noise or uniform luminance patches). These signals trigger adaptive processes at uncharacteristic levels since they are unrepresentative of natural scene content. Thus, for systems using adaptive processes, the resultant MTFs and NPSs are not representative of performance “in the field” (i.e. capturing real scenes).
Spatial image quality metrics for capturing systems aim to predict the relationship between MTF and NPS measurements and subjective ratings of image quality. They cascade both measures with contrast sensitivity functions that describe human visual sensitivity with respect to spatial frequency. The most recent metrics designed for adaptive systems use MTFs measured using the dead leaves test chart that is more representative of natural scene content than the abovementioned test charts. This marks a step toward modelling image quality with respect to real scene signals.
This thesis presents novel scene-and-process-dependent MTFs (SPD-MTF) and NPSs (SPDNPS). They are measured from imaged pictorial scene (or dead leaves target) signals to account for system scene-dependency. Further, a number of spatial image quality metrics are revised to account for capture system and visual scene-dependency. Their MTF and NPS parameters were substituted for SPD-MTFs and SPD-NPSs. Likewise, their standard visual functions were substituted for contextual detection (cCSF) or discrimination (cVPF) functions. In addition, two novel spatial image quality metrics are presented (the log Noise Equivalent Quanta (NEQ) and Visual log NEQ) that implement SPD-MTFs and SPD-NPSs.
The metrics, SPD-MTFs and SPD-NPSs were validated by analysing measurements from simulated image capture pipelines that applied either linear or adaptive image signal processing. The SPD-NPS measures displayed little evidence of measurement error, and the metrics performed most accurately when they used SPD-NPSs measured from images of scenes. The benefit of deriving SPD-MTFs from images of scenes was traded-off, however, against measurement bias. Most metrics performed most accurately with SPD-MTFs derived from dead leaves signals. Implementing the cCSF or cVPF did not increase metric accuracy.
The log NEQ and Visual log NEQ metrics proposed in this thesis were highly competitive, outperforming metrics of the same genre. They were also more consistent than the IEEE P1858 Camera Phone Image Quality (CPIQ) metric when their input parameters were modified. The advantages and limitations of all performance measures and metrics were discussed, as well as their practical implementation and relevant applications
Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems
The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply non- linear content-aware signal processing, which renders their noise scene-dependent. For scene-dependent systems, measuring the NPS with respect to uniform patch signals fails to characterize with accuracy: i) system noise concerning a given input scene, ii) the average system noise power in real-world applications. The scene- and-process-dependent NPS (SPD-NPS) framework addresses these limitations by measuring temporally varying system noise with respect to any given input signal. In this paper, we examine the scene-dependency of simulated camera pipelines in-depth by deriving SPD-NPSs from fifty test scenes. The pipelines apply either linear or non-linear denoising and sharpening, tuned to optimize output image quality at various opacity levels and exposures. Further, we present the integrated area under the mean of SPD-NPS curves over a representative scene set as an objective system noise metric, and their relative standard deviation area (RSDA) as a metric for system noise scene-dependency. We close by discussing how these metrics can also be computed using scene-and-process- dependent Modulation Transfer Functions (SPD-MTF)
Rotational spectrum of cis–cis HOONO
The pure rotational spectrum of cis-cis peroxynitrous acid, HOONO, has been observed. Over 220 transitions, sampling states up to J(')=67 and K-a(')=31, have been fitted with an rms uncertainty of 48.4 kHz. The experimentally determined rotational constants agree well with ab initio values for the cis-cis conformer, a five-membered ring formed by intramolecular hydrogen bonding. The small, positive inertial defect Delta=0.075667(60) amu A(2) and lack of any observable torsional splittings in the spectrum indicate that cis-cis HOONO exists in a well-defined planar structure at room temperature
- …