187 research outputs found
Absolute Triple Differential Cross Section for Ionization of Helium Near Threshold
Absolute measurements with an accuracy of 22% and theoretical results in a distorted-wave Born approximation (DWBA) are reported for the triple-differential cross section for 26.6-eV electron-impact ionization of helium. An apparatus is used that allows all scattering angles to be independently varied for both coplanar and noncoplanar geometries. The measurements are compared with a DWBA calculation that includes exchange distortion in the calculation of the distorted waves, as well as with earlier calculations by Crothers [J. Phys. B 19, 463 (1986)] and Pan and Starace [Phys. Rev. Lett. 67, 185 (1991)]. Emphasis is placed on understanding the mechanisms for near-threshold ionization
Evaluating the suitability of close-kin mark-recapture as a demographic modelling tool for a critically endangered elasmobranch population
Funding Information: We are grateful to the various stakeholders involved in the Celtic Sea blue skate monitoring programme, in particular to the crew aboard the FV Govenek of Ladram. We thank Martina Kopp for her assistance in the laboratory, Andrzej Kilian and the Diversity Arrays Technology team (DArT Pty. Ltd., Canberra, Australia) for performing the genotyping work, and Daniel Ruzzante, Eric Anderson, Mark Bravington, and Robin Waples for their inputs during the early stages of the project at a CKMR workshop at Dalhousie University, Halifax, Canada. MF and CSJ received funding from the MASTS (The Marine Alliance for Science and Technology for Scotland), and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. Our thanks also go to Professor Francis Neat for his expertise and advice on Scottish blue skates, and to Samuel Iglésias and Thomas Barreau for sharing valuable insights from their studies on Celtic Sea blue skate.Peer reviewe
A vibrational spectroscopic study of the copper bearing silicate mineral luddenite.
The molecular structure of the copper?lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm 1 is assigned to the m1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm 1 are attributed to the m3 SiO4 antisymmetric stretching vibrations. The bands in the 678?799 cm 1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm 1 are attributed to water stretching bands. Bands at 3595 and 3629 cm 1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite
Weight management: a comparison of existing dietary approaches in a work-site setting
<b>OBJECTIVES:</b> (1) To compare the effectiveness a 2512 kJ (600 kcal) daily energy deficit diet (ED) with a 6279 kJ (1500 kcal) generalized low-calorie diet (GLC) over a 24 week period (12 weeks weight loss plus 12 weeks weight maintenance). (2) To determine if the inclusion of lean red meat at least five times per week as part of a slimming diet is compatible with weight loss in comparison with a diet that excludes lean red meat.
DESIGN: Randomized controlled trial.
<b>SETTING:</b> Large petrochemical work-site.
<b>PARTICIPANTS:</b> One-hundred and twenty-two men aged between 18 and 55 y.
<b>MAIN OUTCOME MEASURES:</b> Weight loss and maintenance of weight loss.
<b>INTERVENTION:</b> Eligible volunteers were randomized to one of the four diet=meat combinations (ED meat, ED no meat, GLC meat, GLC no meat). One-third of subjects in each diet/meat combination were randomized to an initial control period prior to receiving dietary advice. All subjects attended for review every 2 weeks during the weight loss period. For the 12 week structured weight maintenance phase, individualized energy prescriptions were re-calculated for the ED group as 1.4 (activity factor)x basal metabolic rate. Healthy eating advice was reviewed with subjects in the GLC group. All subjects were contacted by electronic mail at 2 week intervals and anthropometric and dietary information requested.
<b>RESULTS:</b> No difference was evident between diet groups in mean weight loss at 12 weeks (4.3 (s.d. 3.4) kg ED group vs 5.0 (s.d. 3.5) kg GLC group, P=0.34). Mean weight loss was closer to the intended weight loss in the 2512 kJ (600 kcal) ED group. The dropout rate was also lower than the GLC group. The inclusion of lean red meat in the diet on at least five occasions per week did not impair weight loss. Mean weight gain following 12 weeks weight maintenance was þ1.1 (s.d. 1.8) kg, P<0.0001.
No differences were found between groups.
<b>CONCLUSIONS:</b> This study has shown that the individualized 2512 kJ (600 kcal) ED approach was no more effective in terms of weight loss than the 6279 kJ (1500 kcal) GLC approach. However the ED approach might be considered preferable as compliance was better with this less demanding prescription. In terms of weight loss the elimination of red meat from the diet is unnecessary. The weight maintenance intervention was designed as a low-input approach, however weight regain was significant and weight maintenance strategies require further development
Raman spectroscopy of the arsenate minerals maxwellite and in comparison with tilasite.
Maxwellite NaFe3+(AsO4)F is an arsenate mineral containing fluoride and forms a continuous series with tilasite CaMg(AsO4)F. Both maxwellite and tilasite form a continuous series with durangite NaAl3+(AsO4)- F. We have used the combination of scanning electron microscopy with EDS and vibrational spectroscopy to chemically analyse the mineral maxwellite and make an assessment of the molecular structure. Chemical analysis shows that maxwellite is composed of Fe, Na and Ca with minor amounts of Mn and Al. Raman bands for tilasite at 851 and 831 cm_1 are assigned to the Raman active m1 symmetric stretching vibration (A1) and the Raman active triply degenerate m3 antisymmetric stretching vibration (F2). The Raman band of maxwellite at 871 cm_1 is assigned to the m1 symmetric stretching vibration and the Raman band at 812 cm_1 is assigned to the m3 antisymmetric stretching vibration. The intense Raman band of tilasite at 467 cm_1 is assigned to the Raman active triply degenerate m4 bending vibration (F2). Raman band at 331 cm_1 for tilasite is assigned to the Raman active doubly degenerate m2 symmetric bending vibration (E). Both Raman and infrared spectroscopy do not identify any bands in the hydroxyl stretching region as is expected
The molecular structure of the borate mineral szaibelyite MgBO2(OH) : a vibrational spectroscopic study.
We have studied the borate mineral szaibelyite MgBO2(OH) using electron microscopy and vibrational spectroscopy. EDS spectra show a phase composed of Mg with minor amounts of Fe. Both tetrahedral
and trigonal boron units are observed. The nominal resolution of the Raman spectrometer is of the order of 2 cm 1 and as such is sufficient enough to identify separate bands for the stretching bands of the two boron isotopes. The Raman band at 1099 cm 1 with a shoulder band at 1093 cm 1 is assigned to BO stretching vibration. Raman bands at 1144, 1157, 1229, 1318 cm 1 are attributed to the BOH in-plane bending modes. Raman bands at 836 and 988 cm 1 are attributed to the antisymmetric stretching modes of tetrahedral boron. The infrared bands at 3559 and 3547 cm 1 are assigned to hydroxyl stretching vibrations. Broad infrared bands at 3269 and 3398 cm 1 are assigned to water stretching vibrations.
Infrared bands at 1306, 1352, 1391, 1437 cm 1 are assigned to the antisymmetric stretching vibrations of trigonal boron. Vibrational spectroscopy enables aspects of the molecular structure of the borate mineral szaibelyite to be assessed
Distribution and thermal niche of the common skate species complex in the north-east Atlantic
Temperature is one of the most significant variables affecting the geographic distribution and physiology of elasmobranchs. Differing thermal gradients across a species' range can lead to adaptive divergence and differing developmental times, an important consideration for recruitment rates of exploited species. The Critically Endangered common skate (formerly Dipturus batis) has been divided into 2 species, the flapper skate D. intermedius and blue skate D. batis, both of which have undergone dramatic population declines. Here we examine the environmental thermal and geographic distribution of these species, using observations from scientific trawling surveys and recreational angling around the British Isles. As similar-sized specimens of the 2 species can be confused, we validated species identity using molecular genetic techniques. Both species had more extensive geographic ranges than previously reported and different spatial patterns of abundance. The distribution of the blue skate appears to reflect its partiality to thermally less variable and warmer waters, while flapper skate were found in more variable and notably colder areas. The thermal range and current geographic distribution of these species indicate that future projected climate change could have a differential impact on distribution of flapper and blue skate in the north-east Atlantic
The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3-3H2O - a vibrational spectroscopic study.
We have studied the mineral senagalite, a hydrated hydroxy phosphate of aluminium with formula Al2(-PO4)(OH)3_3H2O using a combination of electron microscopy and vibrational spectroscopy. Senegalite crystal aggregates shows tabular to prismatic habitus and orthorhombic form. The Raman spectrum is dominated by an intense band at 1029 cm_1 assigned to the PO3_ 4 m1 symmetric stretching mode. Intense Raman bands are found at 1071 and 1154 cm_1 with bands of lesser intensity at 1110, 1179 and 1206 cm_1 and are attributed to the PO3_ 4 m3 antisymmetric stretching vibrations. The infrared spectrum shows complexity with a series overlapping bands. A comparison is made with spectra of other aluminium containing phosphate minerals such as augelite and turquoise. Multiple bands are observed for the phosphate bending modes giving support for the reduction of symmetry of the phosphate anion. Vibrational spectroscopy offers a means for the assessment of the structure of senagalite
A vibrational spectroscopic study of the silicate mineral harmotome ? (Ba,Na,K)1-2(Si,Al)8O16 6H2O ? a natural zeolite.
The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16 6H2O is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with catalytic potential. Raman bands at 1020 and 1102 cm 1 are assigned to the SiO stretching vibrations of three dimensional siloxane units. Raman bands at 428, 470 and 491 cm 1 are assigned to OSiO bending modes. The broad Raman bands at around 699, 728, 768 cm 1 are attributed to water librational modes. Intense Raman bands in the 3100 to 3800 cm 1 spectral range are assigned to OH stretching vibrations of water in harmotome. Infrared spectra are in harmony with the Raman spectra. A sharp infrared band at 3731 cm 1 is assigned to the OH stretching vibration of SiOH units. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral harmotome
Population and seascape genomics of a critically endangered benthic elasmobranch, the blue skate Dipturus batis
The blue skate (Dipturus batis) has a patchy distribution across the North-East Atlantic Ocean, largely restricted to occidental seas around the British Isles following fisheries-induced population declines and extirpations. The viability of remnant populations remains uncertain, and could be impacted by continued fishing and bycatch pressure and the projected impacts of climate change. We genotyped 503 samples of D. batis, obtained opportunistically from the widest available geographic range, across 6,350 single nucleotide polymorphisms (SNPs) using a reduced-representation sequencing approach. Genotypes were used to assess the species’ contemporary population structure, estimate effective population sizes, and identify putative signals of selection in relation to environmental variables using a seascape genomics approach. We identified genetic discontinuities between inshore (British Isles) and offshore (Rockall and Faroe Island) populations, with differentiation most pronounced across the deep waters of the Rockall Trough. Effective population sizes were largest in the Celtic Sea and Rockall, but low enough to be of potential conservation concern among Scottish and Faroese sites. Among the 21 candidate SNPs under positive selection was one significantly correlated with environmental variables predicted to be affected by climate change, including bottom temperature, salinity, and pH. The paucity of well annotated elasmobranch genomes precluded us from identifying a putative function for this SNP. Nevertheless, our findings suggest that climate change could inflict a strong selective force upon remnant populations of D. batis, further constraining its already restricted habitat. Furthermore, the results provide fundamental insights on the distribution, behaviour, and evolutionary biology of D. batis in the North-East Atlantic that will be useful for the establishment of conservation actions for this and other critically endangered elasmobranchs
- …