166 research outputs found

    Interference detection in gaussian noise

    Full text link
    Interference detection in gaussian noise is proposed. It can be applied for easy detection and editing of interference lines in radio spectral line observations. One need not know the position of occurence or keep track of interference in the band. Results obtained on real data have been displayed.Comment: 10 pages, 11 figure

    TMF is a golgin that binds Rab6 and influences Golgi morphology

    Get PDF
    BACKGROUND: Golgins are coiled-coil proteins associated with the Golgi apparatus, that are believed to be involved in the tethering of vesicles and the stacking of cisternae, as well as other functions such as cytoskeletal association. Many are peripheral membrane proteins recruited by GTPases. Several have been described in animal cells, and some in yeast, but the relationships between golgins from different species can be hard to define because although they share structural features, their sequences are not well conserved. RESULTS: We show here that the yeast protein Sgm1, previously shown to be recruited to the Golgi by the GTPase Ypt6, binds to Ypt6:GTP via a conserved 100-residue coiled-coil motif that can be identified in a wide range of eukaryotes. The mammalian equivalent of Sgm1 is TMF/ARA160, a protein previously identified in various screens as a putative transcription or chromatin remodelling factor. We show that it is a Golgi protein, and that it binds to the three known isoforms of the Ypt6 homologue Rab6. Depletion of the protein by RNA interference in rat NRK cells results in a modest dispersal of Golgi membranes around the cell, suggesting a role for TMF in the movement or adherence of Golgi stacks. CONCLUSION: We have identified TMF as an evolutionarily conserved golgin that binds Rab6 and contributes to Golgi organisation in animal cells

    Driver frustration detection from audio and video in the wild

    Get PDF
    We present a method for detecting driver frustration from both video and audio streams captured during the driver's interaction with an in-vehicle voice-based navigation system. The video is of the driver's face when the machine is speaking, and the audio is of the driver's voice when he or she is speaking. We analyze a dataset of 20 drivers that contains 596 audio epochs (audio clips, with duration from 1 sec to 15 sec) and 615 video epochs (video clips, with duration from 1 sec to 45 sec). The dataset is balanced across 2 age groups, 2 vehicle systems, and both genders. The model was subject-independently trained and tested using 4-fold cross-validation. We achieve an accuracy of 77.4% for detecting frustration from a single audio epoch and 81.2% for detecting frustration from a single video epoch. We then treat the video and audio epochs as a sequence of interactions and use decision fusion to characterize the trade-off between decision time and classification accuracy, which improved the prediction accuracy to 88.5% after 9 epochs

    Radial orbit instability as a dissipation-induced phenomenon

    Full text link
    This paper is devoted to Radial Orbit Instability in the context of self-gravitating dynamical systems. We present this instability in the new frame of Dissipation-Induced Instability theory. This allows us to obtain a rather simple proof based on energetics arguments and to clarify the associated physical mechanism.Comment: 15 pages. Published in Monthly Notices of the RAS by the Royal Astronomical Society and Blackwell Publishing. Corrected for page style, typos, and added reference

    pp-sdsd shell gap reduction in neutron-rich systems and cross-shell excitations in 20^{20}O

    Full text link
    Excited states in 20^{20}O were populated in the reaction 10^{10}Be(14^{14}C,α\alpha) at Florida State University. Charged particles were detected with a particle telescope consisting of 4 annularly segmented Si surface barrier detectors and γ\gamma radiation was detected with the FSU γ\gamma detector array. Five new states were observed below 6 MeV from the α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidence data. Shell model calculations suggest that most of the newly observed states are core-excited 1p-1h excitations across the N=Z=8N = Z = 8 shell gap. Comparisons between experimental data and calculations for the neutron-rich O and F isotopes imply a steady reduction of the pp-sdsd shell gap as neutrons are added

    Virus–host interactions: insights from the replication cycle of the large \u3ci\u3eParamecium bursaria\u3c/i\u3e chlorella virus

    Get PDF
    The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membranecontaining sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans andmice, proceeds througha bacteriophage -like infection pathway

    Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing

    Get PDF
    In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si− plus C− and Au + ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphous and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed

    Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing

    No full text
    A technique is presented to selectively graphitize regions of SiC by ion implantation and pulsed laser annealing (PLA). Nanoscale features are patterned over large areas by multi-ion beam lithography and subsequently converted to few-layer graphene via PLA in air. Graphitization occurs only where ions have been implanted and without elevating the temperature of the surrounding substrate. Samples were characterized using Raman spectroscopy, ion scattering/channeling, SEM, and AFM, from which the degree of graphitization was determined to vary with implantation species, damage and dose, laser fluence, and pulsing. Contrasting growth regimes and graphitization mechanisms during PLA are discussed.This work is supported by the Office of Naval Research (ONR) under Contract Number 00075094 (BRA) and by the National Science Foundation (NSF) under Contract Number 1005301 (AFH)

    Shell structure at N=28 near the dripline: spectroscopy of 42^{42}Si, 43^{43}P and 44^{44}S

    Get PDF
    Measurements of the N=28 isotones 42Si, 43P and 44S using one- and two-proton knockout reactions from the radioactive beam nuclei 44S and 46Ar are reported. The knockout reaction cross sections for populating 42Si and 43P and a 184 keV gamma-ray observed in 43P establish that the d_{3/2} and s_{1/2} proton orbits are nearly degenerate in these nuclei and that there is a substantial Z=14 subshell closure separating these two orbits from the d_{5/2} orbit. The increase in the inclusive two-proton knockout cross section from 42Si to 44S demonstrates the importance of the availability of valence protons for determining the cross section. New calculations of the two-proton knockout reactions that include diffractive effects are presented. In addition, it is proposed that a search for the d_{5/2} proton strength in 43P via a higher statistics one-proton knockout experiment could help determine the size of the Z=14 closure.Comment: Phys. Rev. C, in pres
    • …
    corecore