574 research outputs found

    The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    Full text link
    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET -2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 mum luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.Comment: 11 pages,9 figures,accepted for publication in MNRA

    Towards a robust estimate of the merger rate evolution using near-IR photometry

    Get PDF
    We use a combination of deep, high angular resolution imaging data from the CDFS (HST/ACS GOODS survey) and ground based near-IR KsK_s images to derive the evolution of the galaxy major merger rate in the redshift range 0.2z1.20.2 \leq z \leq 1.2. We select galaxies on the sole basis of their J-band rest-frame, absolute magnitude, which is a good tracer of the stellar mass. We find steep evolution with redshift, with the merger rate (1+z)3.43±0.49\propto (1+z)^{3.43\pm0.49} for optically selected pairs, and (1+z)2.18±0.18\propto (1+z)^{2.18\pm0.18} for pairs selected in the near-IR. Our result is unlikely to be affected by luminosity evolution which is relatively modest when using rest-frame J band selection. The apparently more rapid evolution that we find in the visible is likely caused by biases relating to incompleteness and spatial resolution affecting the ground based near IR photometry, underestimating pair counts at higher redshifts in the near-IR. The major merger rate was \sim5.6 times higher at z1.2z\sim1.2 than at the current epoch. Overall 41%×\times(0.5\gyr/τ\tau) of all galaxies with MJ19.5M_J\leq-19.5 have undergone a major merger in the last \sim8 \gyr, where τ\tau is the merger timescale. Interestingly, we find no effect on the derived major merger rate due to the presence of the large scale structure at z=0.735z=0.735 in the CDFS.Comment: Accepted for Publication in ApJ. 9 Figure

    FALCON: a concept to extend adaptive optics corrections to cosmological fields

    Get PDF
    FALCON is an original concept for a next generation spectrograph at ESO VLT or at future ELTs. It is a spectrograph including multiple small integral field units (IFUs) which can be deployed within a large field of view such as that of VLT/GIRAFFE. In FALCON, each IFU features an adaptive optics correction using off-axis natural reference stars in order to combine, in the 0.8-1.8 \mu m wavelength range, spatial and spectral resolutions (0.1-0.15 arcsec and R=10000+/-5000). These conditions are ideally suited for distant galaxy studies, which should be done within fields of view larger than the galaxy clustering scales (4-9 Mpc), i.e. foV > 100 arcmin2. Instead of compensating the whole field, the adaptive correction will be performed locally on each IFU. This implies to use small miniaturized devices both for adaptive optics correction and wavefront sensing. Applications to high latitude fields imply to use atmospheric tomography because the stars required for wavefront sensing will be in most of the cases far outside the isoplanatic patch.Comment: To appear in the Backaskog "Second Workshop on ELT" SPIE proceeding

    Reproducing properties of MW dSphs as descendants of DM-free TDGs

    Full text link
    The Milky Way (MW) dwarf spheroidal (dSph) satellites are known to be the most dark-matter (DM) dominated galaxies with estimates of dark to baryonic matter reaching even above one hundred. It comes from the assumption that dwarfs are dynamically supported by their observed velocity dispersions. However their spatial distributions around the MW is not at random and this could challenge their origin, previously assumed to be residues of primordial galaxies accreted by the MW potential. Here we show that alternatively, dSphs could be the residue of tidal dwarf galaxies (TDGs), which would have interacted with the Galactic hot gaseous halo and disk. TDGs are gas-rich and have been formed in a tidal tail produced during an ancient merger event at the M31 location, and expelled towards the MW. Our simulations show that low-mass TDGs are fragile to an interaction with the MW disk and halo hot gas. During the interaction, their stellar content is progressively driven out of equilibrium and strongly expands, leading to low surface brightness feature and mimicking high dynamical M/L ratios. Our modeling can reproduce the properties, including the kinematics, of classical MW dwarfs within the mass range of the Magellanic Clouds to Draco. An ancient gas-rich merger at the M31 location could then challenge the currently assumed high content of dark matter in dwarf galaxies. We propose a simple observational test with the coming GAIA mission, to follow their expected stellar expansion, which should not be observed within the current theoretical framework.Comment: 17 pages, 11 figures, accepted by the Monthly Notices of the Royal Astronomical Society (MNRAS

    An extended stellar halo discovered in the Fornax dwarf spheroidal using Gaia EDR3

    Full text link
    We have studied the extent of the Red Giant Branch stellar population in the Fornax dwarf spheroidal galaxy using the spatially extended and homogeneous data set from Gaia EDR3. Our preselection of stars belonging to Fornax is based on their proper motions, parallaxes and color-magnitude diagram. The latter criteria provide a Fornax star sample, which we further restrict by color and magnitude to eliminate contaminations due to either Milky Way stars or QSOs. The precision of the data has been sufficient to reach extremely small contaminations (0.02 to 0.3%), allowing us to reach to a background level 12 magnitudes deeper than the central surface brightness of Fornax. We discover a break in the density profile, which reveals the presence of an additional component that extents 2.1 degree in radius, i.e. 5.4 kpc, and almost seven times the half-light radius of Fornax. The extended new component represents 10% of the stellar mass of Fornax, and behaves like an extended halo. The absence of tidally elongated features at such an unprecedented depth (equivalent to 37.94±0.1637.94\pm0.16 mag arcsec2{\rm arcsec}^{-2} in V-band) rules out a possible role of tidal stripping. We suggest instead that Fornax is likely at first infall, and has lost its gas very recently, which consequently leads to a lack of gravity implying that residual stars have spherically expanded to form the newly discovered stellar halo of Fornax.Comment: 15 pages, 10 figures, 4 tables, MNRAS, in press, version based on proof

    Developing an integrated concept for the E-ELT Multi-Object Spectrograph (MOSAIC): design issues and trade-offs

    Full text link
    We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments. MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared

    Revisiting mass estimates of the Milky Way

    Full text link
    We use the rotation curve from Gaia data release (DR) 3 to estimate the mass of the Milky Way. We consider an Einasto density profile to model the dark matter component. We extrapolate and obtain a dynamical mass M=2.750.48+3.11×1011MM=2.75^{+3.11}_{-0.48}\times 10^{11} M_\odot at 112112 kpc. This lower-mass Milky Way is consistent with the significant declining rotation curve, and can provide new insights into our Galaxy and halo inhabitants.Comment: 4 pages, 2 figures, Accepted for publication in proceedings of IAU Symposium 379: Dynamical Masses of Local Group Galaxies, Potsdam, March 20-24, 202
    corecore