3,161 research outputs found

    Dining Cryptographers with 0.924 Verifiable Collision Resolution

    Get PDF
    The dining cryptographers protocol implements a multiple access channel in which senders and recipients are anonymous. A problem is that a malicious participant can disrupt communication by deliberately creating collisions. We propose a computationally secure dining cryptographers protocol with collision resolution that achieves a maximum stable throughput of 0.924 messages per round and which allows to easily detect disruptors.Comment: 11 pages, 3 figure

    Iterative Decoding of Trellis-Constrained Codes inspired by Amplitude Amplification (Preliminary Version)

    Full text link
    We propose a decoder for Trellis-Constrained Codes, a super-class of Turbo- and LDPC codes. Inspired by amplitude amplification from quantum computing, we attempt to amplify the relative likelihood of the most likely codeword until it stands out from all other codewords

    Self-Stabilizing Wavelets and r-Hops Coordination

    Full text link
    We introduce a simple tool called the wavelet (or, r-wavelet) scheme. Wavelets deals with coordination among processes which are at most r hops away of each other. We present a selfstabilizing solution for this scheme. Our solution requires no underlying structure and works in arbritrary anonymous networks, i.e., no process identifier is required. Moreover, our solution works under any (even unfair) daemon. Next, we use the wavelet scheme to design self-stabilizing layer clocks. We show that they provide an efficient device in the design of local coordination problems at distance r, i.e., r-barrier synchronization and r-local resource allocation (LRA) such as r-local mutual exclusion (LME), r-group mutual exclusion (GME), and r-Reader/Writers. Some solutions to the r-LRA problem (e.g., r-LME) also provide transformers to transform algorithms written assuming any r-central daemon into algorithms working with any distributed daemon

    Characterization of domain walls in BaTiO3 using simultaneous atomic force and piezo response force microscopy

    Get PDF
    In this letter a method to simultaneously measure the physical and the polarization thickness of a 90° domain wall in a ferroelectric perovskite is presented. This method combines accurate atomic force microscopy and piezoresponse force microscopy scans of the same area with little drift and an analysis of the entire scanned area. It is found that the physical thickness is significantly narrower (about seven and a half times) than the polarization thickness in a 90° domain wall in BaTiO3. Evidence of the trapping of defects at such domain walls is also found

    Dining Cryptographers are Practical

    Full text link
    The dining cryptographers protocol provides information-theoretically secure sender and recipient untraceability. However, the protocol is considered to be impractical because a malicious participant may disrupt the communication. We propose an implementation which provides information-theoretical security for senders and recipients, and in which a disruptor with limited computational capabilities can easily be detected.Comment: 12 page

    Die Bekleidungsindustrie in der EWG

    Full text link

    Gemeinsame EWG-Handelspolitik - eine Illusion?

    Full text link
    • …
    corecore