4,199 research outputs found
Theory of High-Tc Superconducting Cuprates Based on Experimental Evidence
A model of superconductivity in layered high-temperature superconducting
cuprates is proposed, based on the extended saddle point singularities in the
electron spectrum, weak screening of the Coulomb interaction and
phonon-mediated interaction between electrons plus a small short -range
repulsion of Hund's, or spin-fluctuation, origin. This permits to explain the
large values of , features of the isotope effect on oxygen and copper, the
existence of two types of the order parameter, the peak in the inelastic
neutron scattering, the positive curvature of the upper critical field, as
function of temperature etc.Comment: RevTeX 3.x, 11 Postscript figures (included); send comments to
[email protected]
Large isotope effect on in cuprates despite of a small electron-phonon coupling
We calculate the isotope coefficients and for the
superconducting critical temperature and the pseudogap temperature
in a mean-field treatment of the t-J model including phonons. The
pseudogap phase is identified with the -charge-density wave (-CDW) phase
in this model. Using the small electron-phonon coupling constant obtained previously in LDA calculations in YBaCuO,
is negative but negligible small whereas increases
from about 0.03 at optimal doping to values around 1 at small dopings in
agreement with the general trend observed in many cuprates. Using a simple
phase fluctuation model where the -CDW has only short-range correlations it
is shown that the large increase of at low dopings is rather universal
and does not depend on the existence of sharp peaks in the density of states in
the pseudogap state or on specific values of the phonon cutoff. It rather is
caused by the large depletion of spectral weight at low frequencies by the
-CDW and thus should also occur in other realizations of the pseudogap.Comment: 8 pages, 5 figures, to be publ. in PR
Origin and roles of a strong electron-phonon interaction in cuprate oxide superconductors
A strong electron-phonon interaction arises from the modulation of the
superexchange interaction by phonons. As is studied in Phys. Rev. B 70, 184514
(2004), Cu-O bond stretching modes can be soft around (pm pi/a, 0) and (0, pm
pi/a), with a the lattice constant of CuO_2 planes. In the critical region of
SDW, where antiferromagnetic spin fluctuations are developed around nesting
wave numbers Q of the Fermi surface, the stretching modes can also be soft
around 2Q. Almost symmetric energy dependences of the 2Q component of the
density of states, which are observed in the so called stripe and checker-board
states, cannot be explained by CDW with 2Q following the complete softening of
the 2Q modes, but they can be explained by a second-harmonic effect of SDW with
Q. The strong electron-phonon interaction can play no or only a minor role in
the occurrence of superconductivity.Comment: 5 pages, 1 fugur
Implications of the isotope effects on the magnetization, magnetic torque and susceptibility
We analyze the magnetization, magnetic torque and susceptibility data of
La2-xSrxCu(16,18)O4 and YBa2(63,65)CuO7-x near Tc in terms of the universal
3D-XY scaling relations. It is shown that the isotope effect on Tc mirrors that
on the anisotropy. Invoking the generic behavior of the anisotropy the doping
dependence of the isotope effects on the critical properties, including Tc,
correlation lengths and magnetic penetration depths are traced back to a change
of the mobile carrier concentration.Comment: 5 pages, 3 figure
Intrinsic and structural isotope effects in Fe-based superconductors
The currently available results of the isotope effect on the superconducting
transition temperature T_c in Fe-based high-temperature superconductors (HTS)
are highly controversial. The values of the Fe isotope effect (Fe-IE) exponent
\alpha_Fe for various families of Fe-based HTS were found to be as well
positive, as negative, or even be exceedingly larger than the BCS value
\alpha_BCS=0.5. Here we demonstrate that the Fe isotope substitution causes
small structural modifications which, in turn, affect T_c. Upon correcting the
isotope effect exponent for these structural effects, an almost unique value of
\alpha~0.35-0.4 is observed for at least three different families of Fe-based
HTS.Comment: 4 pages, 2 figure
Isotope effect on superconductivity in Josephson coupled stripes in underdoped cuprates
Inelastic neutron scattering data for YBaCuO as well as for LaSrCuO indicate
incommensurate neutron scattering peaks with incommensuration away
from the point. can be replotted as a linear function of
the incommensuration for these materials. This linear relation implies that the
constant that relates these two quantities, one being the incommensuration
(momentum) and another being (energy), has the dimension of velocity
we denote : . We argue that this
experimentally derived relation can be obtained in a simple model of Josephson
coupled stripes. Within this framework we address the role of the isotope effect on the . We assume that the incommensuration is
set by the {\em doping} of the sample and is not sensitive to the oxygen
isotope given the fixed doping. We find therefore that the only parameter that
can change with O isotope substitution in the relation
is the velocity . We predict an oxygen isotope effect on and expect
it to be .Comment: 4 pages latex file, 2 eps fig
- …